Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol. 2015;178:178–86. https://doi.org/10.1016/j.biortech.2014.09.103.
Article
CAS
PubMed
Google Scholar
Podkaminer K, Lin Z. Analyzing the impacts of a biogas-to-electricity purchase incentive on electric vehicle deployment with the MA3T vehicle choice model. Washington, D.C: US Department of Energy; 2017.
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77. http://www.ncbi.nlm.nih.gov/pubmed/12209002. Accessed 23 Dec 2016.
Paye JMD, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH, et al. Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels. 2016;9:1–13.
Article
Google Scholar
Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev. 2011;15:821–6. https://doi.org/10.1016/j.rser.2010.07.042.
Article
CAS
Google Scholar
Pohl M, Mumme J, Heeg K, Nettmann E. Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol. 2012;124:321–7. https://doi.org/10.1016/j.biortech.2012.08.063.
Article
CAS
PubMed
Google Scholar
Sheets JP, Ge X, Li Y. Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass. Bioresour Technol. 2015;180:296–303.
Article
CAS
PubMed
Google Scholar
Holwerda EK, Lynd LR. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Biotechnol Bioeng. 2013;110:2389–94.
Article
CAS
PubMed
Google Scholar
Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol. 2000;74:3–16. https://doi.org/10.1016/S0960-8524(00)00023-7.
Article
CAS
Google Scholar
Pavlostathis SG, Giraldo-Gomez E. Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control. 1991;21:411–90. https://doi.org/10.1080/10643389109388424.
Article
CAS
Google Scholar
Zahedi S, Sales D, Romero LI, Solera R. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics. Bioresour Technol. 2013;146:109–17. https://doi.org/10.1016/j.biortech.2013.07.055.
Article
CAS
PubMed
Google Scholar
Ho D, Jensen P, Batstone D. Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environ Sci Technol. 2014;48:6468–76.
Article
CAS
PubMed
Google Scholar
Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci Rep. 2015;5:8496. https://doi.org/10.1038/srep08496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z. Thermophilic anaerobic co-digestion of swine manure with corn stover for biogas production. North Carolina State University; 2017. https://repository.lib.ncsu.edu/bitstream/handle/1840.20/33628/etd.pdf?sequence=1. Accessed 4 Apr 2018.
Kim JK, Oh BR, Chun YN, Kim SW. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng. 2006;102:328–32. https://doi.org/10.1263/JBB.102.328.
Article
CAS
PubMed
Google Scholar
Pohl M, Heeg K, Mumme J. Anaerobic digestion of wheat straw—performance of continuous solid-state digestion. Bioresour Technol. 2013;146:408–15. https://doi.org/10.1016/j.biortech.2013.07.101.
Article
CAS
PubMed
Google Scholar
Svartström O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, et al. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 2017;11:2538–2551.
Article
PubMed
PubMed Central
Google Scholar
Morrison M, Pope PB, Denman SE, McSweeney CS. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol. 2009;20:358–63.
Article
CAS
PubMed
Google Scholar
Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels. 2016;9:121. https://doi.org/10.1186/s13068-016-0534-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi J, Wang Z, Stiverson JA, Yu Z, Li Y. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol. 2013;136:574–81. https://doi.org/10.1016/j.biortech.2013.02.073.
Article
CAS
PubMed
Google Scholar
Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, et al. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol. 2011;77:5804–12. https://doi.org/10.1128/AEM.00032-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, et al. A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE. 2014;9:e106707.
Article
PubMed
PubMed Central
Google Scholar
Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 2015;9:1710–22.
Article
PubMed
PubMed Central
Google Scholar
Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ Microbiol. 2016;18:3144–58.
Article
CAS
PubMed
Google Scholar
Wilkens C, Busk PK, Pilgaard B, Zhang W, Nielsen KL, Nielsen H, et al. Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnol Biofuels. 2017;10:1–14.
Article
Google Scholar
Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol. 2015;8:749–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol. 2017;15:83–95.
Article
CAS
PubMed
Google Scholar
Batista-García RA, del Sánchez-Carbente MR, Talia P, Jackson SA, O’Leary ND, Dobson ADW, et al. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Biorefin. 2016;10:864–82.
Article
Google Scholar
Terrapon N, Lombard V, Drula E, Coutinho PM, Henrissat B. The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: Aoki-Kinoshita KF, editor. A practical guide to using glycomics databases. Tokyo: Springer; 2017. p. 117–31.
Chapter
Google Scholar
Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol. 2013;79:1545–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talamantes D, Biabini N, Dang H, Abdoun K, Berlemont R. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol Biofuels. 2016;9:1–11.
Article
Google Scholar
Weimann A, Trukhina Y, Pope PB, Konietzny SG, McHardy AC. De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes. Biotechnol Biofuels. 2013;6:24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V. Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Nat Publ Gr. 2017;7:42623.
CAS
Google Scholar
Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30:1458–80.
Article
PubMed
Google Scholar
Yang B, Dai Z, Ding S, Wyman CE. Enzymatic hydrolysis of cellulosic biomass. Biofuels. 2011;2:421–49.
Article
CAS
Google Scholar
Xu Q, Ding S-Y, Brunecky R, Bomble YJ, Himmel ME, Baker JO. Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels. 2013;6:126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern J, Moraïs S, Lamed R, Bayer EA. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio. 2016;7:e00083-16.
Article
PubMed
PubMed Central
Google Scholar
Himmel ME, Xu Q, Luo Y, Ding S-YY, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels. 2010;1:323–41.
Article
CAS
Google Scholar
Koeck DE, Pechtl A, Zverlov VV, Schwarz WH. Genomics of cellulolytic bacteria. Curr Opin Biotechnol. 2014;29:171–83.
Article
CAS
PubMed
Google Scholar
Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 2011;39:3240–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, et al. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 2011;5:1323–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels. 2016;9:104.
Article
PubMed
PubMed Central
Google Scholar
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016. http://science.sciencemag.org/content/early/2016/02/17/science.aad1431.abstract.
Kolinko S, Wu Y-W, Tachea F, Denzel E, Hiras J, Gabriel R, et al. A bacterial pioneer produces cellulase complexes that persist through community succession. Nat Microbiol. 2017. https://doi.org/10.1038/s41564-017-0052-z.
Article
PubMed
PubMed Central
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of ash in biomass laboratory analytical procedure (LAP) issue date : 7/17/2005 determination of ash in biomass laboratory analytical procedure (LAP). 2008.
Lovley DR, Greening RC, Ferry JG. Rapidly growing rumen methanogenic organism that synthesizes coenzyme-M and has a high-affinity for formate. Appl Environ Microbiol. 1984;48(1):81–7.
CAS
PubMed
PubMed Central
Google Scholar
Saeman JF, Bubl JL, Harris EE. Quantitative saccharification of wood and cellulose. Ind Eng Chem. 1945;17:35–7.
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory: Golden; 2008.
Google Scholar
Baskaran S. Factors for enhanced ethanol production using Clostridium thermosaccharolyticum. Hanover: Dartmouth College; 1996.
Google Scholar
Steinberg LM, Regan JM. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic Fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol. 2008;74:6663–71. https://doi.org/10.1128/AEM.00553-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002.
Article
CAS
PubMed
Google Scholar
Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, et al. The Populus holobiont : dissecting the effects of plant niches and genotype on the microbiome. Microbiome. 2018;6(1):31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coman C, Chiriac CM, Robeson MS, Ionescu C, Dragos N, Barbu-Tudoran L, et al. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania. Front Microbiol. 2015;6:1–14.
Article
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.
Article
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. https://doi.org/10.1038/nmeth.2604.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.
Article
CAS
PubMed
Google Scholar
Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:1–4.
Article
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.
Article
PubMed
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Article
CAS
PubMed
Google Scholar
Pireddu L, Leo S, Zanetti G. Seal: a distributed short read mapping and duplicate removal tool. Bioinformatics. 2011;27:2159–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavromatis K, Ivanova NN, Chen I-MA, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci. 2009;1:63–7.
Article
PubMed
PubMed Central
Google Scholar
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7. https://doi.org/10.1093/bioinformatics/btv638.
Article
CAS
PubMed
Google Scholar
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
Article
PubMed
PubMed Central
Google Scholar
Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:1–8.
Article
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:1–12.
Article
Google Scholar
Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics. 2012;28:125–6.
Article
CAS
PubMed
Google Scholar
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Worm P, Koehorst JJ, Visser M, Sedano-Núñez VT, Schaap PJ, Plugge CM, et al. A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta Bioenergy. 2014;1837:2004–16.
Article
CAS
Google Scholar
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2008;36:D623–31.
Article
CAS
PubMed
Google Scholar
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.
Article
CAS
PubMed
Google Scholar
Winkler M-KH, Boets P, Hahne B, Goethals P, Volcke EIP. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration. PLoS ONE. 2017;12:e0172785. https://doi.org/10.1371/journal.pone.0172785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, et al. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J. 2016;10:2679–92.
Article
PubMed
PubMed Central
Google Scholar
Izquierdo JA, Pattathil S, Guseva A, Hahn MG, Lynd LR. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material. Biotechnol Biofuels. 2014;7:136. https://doi.org/10.1186/s13068-014-0136-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, et al. Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci. 2012;6:104–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, et al. Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol. 2009;59:1764–70.
Article
CAS
PubMed
Google Scholar
Hania WB, Bouanane-Darenfed A, Cayol J-L, Ollivier B, Fardeau M-L. Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium. Int J Syst Evol Microbiol. 2016;66:1506–9. https://doi.org/10.1099/ijsem.0.000910.
Article
CAS
PubMed
Google Scholar
Ollivier BM, Mah RA, Ferguson TJ, Boone DR, Garcia JL, Robinson R. Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst Bacteriol. 1985;35:425–8.
Article
CAS
Google Scholar
Lü F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, et al. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J. 2014;8:88–102.
Article
PubMed
Google Scholar
Schnürer A, Schink B, Svensson BH. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Evol Microbiol. 1996;46:1145–52.
Google Scholar
Izquierdo JA, Sizova MV, Lynd LR. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol. 2010;76:3545–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, et al. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS ONE. 2014;9:e99221.
Article
PubMed
PubMed Central
Google Scholar
Krakat N, Westphal A, Schmidt S, Scherer P. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol. 2010;76:1842–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hori T, Sasaki D, Haruta S, Shigematsu T, Ueno Y, Ishii M, et al. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology. 2011;157:1980–9.
Article
CAS
PubMed
Google Scholar
Levén L, Eriksson ARB, Schnürer A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol. 2007;59:683–93. https://doi.org/10.1111/j.1574-6941.2006.00263.x.
Article
CAS
PubMed
Google Scholar
Schmidt A, Müller N, Schink B, Schleheck D. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS ONE. 2013;8:e56905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nizami A-S, Korres NE, Murphy JD. Review of the integrated process for the production of grass biomethane. Environ Sci Technol. 2009;43:8496–508. https://doi.org/10.1021/es901533j.
Article
CAS
PubMed
Google Scholar
Nasir IM, Ghazi TIM, Omar R. Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl Microbiol Biotechnol. 2012;95:321–9.
Article
Google Scholar
Fan Z, Lynd LR. Conversion of paper sludge to ethanol. I: impact of feeding frequency and mixing energy characterization. Bioprocess Biosyst Eng. 2007;30:27–34.
Article
CAS
PubMed
Google Scholar
Yilmaz T, Yuceer A, Basibuyuk M. A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater. Bioresour Technol. 2008;99:156–63. https://doi.org/10.1016/J.BIORTECH.2006.11.038.
Article
CAS
PubMed
Google Scholar
Van Soest PJ. The uniformity and nutritive availability of cellulose. Fed Proc. 1973;32:1804–8.
PubMed
Google Scholar
Richard TL. The effect of lignin on biodegradability. Cornell Waste Management Institute. 1996. http://compost.css.cornell.edu/calc/lignin.html. Accessed 4 Apr 2018.
Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, et al. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol. 2011;102:8040–5.
Article
CAS
PubMed
Google Scholar
Shao X, DiMarco K, Richard TL, Lynd LR. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue. Biotechnol Biofuels. 2015;8:35. https://doi.org/10.1186/s13068-015-0225-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels. 2016;9:1–28.
Article
Google Scholar
Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL, Monroy O, et al. Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology. 2004;150:3429–40.
Article
CAS
PubMed
Google Scholar
Hania WB, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML. Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol. 2012;62:1377–82.
Article
PubMed
Google Scholar
Maus I, Cibis KG, Bremges A, Stolze Y, Wibberg D, Tomazetto G, et al. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment. J Biotechnol. 2016;232:50–60.
Article
CAS
PubMed
Google Scholar
Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, et al. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol. 2012;194:4015–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4110.
Article
PubMed
PubMed Central
Google Scholar