Crawford MA, Sinclair AJ. Nutritional influences in the evolution of mammalian brain. In: lipids, malnutrition and the developing brain. Ciba Foundation symposium. 1971:267–292.
Gill I, Valivety R. Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol. 1997;15:401–9.
Article
CAS
Google Scholar
Ahern TJ, Katoh S, Sada E. Arachidonic acid production by the red alga Porphyridium cruentum. Biotechnol Bioeng. 1983;25:1057–70.
Article
CAS
Google Scholar
Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry. 2002;60:497–503.
Article
CAS
Google Scholar
Cohen Z, Vonshak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol. 2010;24:328–32.
Google Scholar
Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L. Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour Bioprocess. 2016;3:1–9.
Article
Google Scholar
Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng. 2016;39:1129–36.
Article
CAS
Google Scholar
Chu WL, Phang SM, Goh SH. Influence of carbon source on growth, biochemical composition and pigmentation of Ankistrodesmus convolutus. J Appl Phycol. 1995;7:59–64.
Article
CAS
Google Scholar
Chu WL, Phang SM, Goh SH. Environmental effects on growth and biochemical composition of Nitzschia inconspicua Grunow. J Appl Phycol. 1996;8:389–96.
Article
CAS
Google Scholar
Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotech Lett. 2003;25:421–5.
Article
CAS
Google Scholar
O’Grady J, Morgan JA. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng. 2011;34:121–5.
Article
Google Scholar
Yee W. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Biores Technol. 2015;196:1–8.
Article
CAS
Google Scholar
Litchman E, Klausmeier CA. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst. 2008;39:615–39.
Article
Google Scholar
Edwards KF, Litchman E, Klausmeier CA. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol Lett. 2013;16:56–63.
Article
Google Scholar
Irwin AJ, Nelles AM, Finkel ZV. Phytoplankton niches estimated from field data. Limnol Oceanogr. 2012;57:787–97.
Article
Google Scholar
Xiao W, Wang L, Laws E, Xie Y, Chen J, Liu X, Chen B, Huang B. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea. Prog Oceanogr. 2018;162:223–39.
Article
Google Scholar
Guihéneuf F, Stengel DB. Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res. 2015;10:152–63.
Article
Google Scholar
Hastie TJ, Tibshirani RJ. Generalized additive models, vol. 43. London: Chapman and Hall; 1990.
Google Scholar
Wood S. Generalized additive models: an introduction with R. London: Chapman and Hall; 2006.
Book
Google Scholar
Zuur AF, Ieno EN, Smith GM. Analysing ecological data. Berlin: Springer; 2007.
Book
Google Scholar
Zuur AF. Mixed effects models and extensions in ecology with R. Berlin: Springer; 2009.
Book
Google Scholar
Richards R, Tomlinson RB, Chaloupka M. Using generalized additive models to assess, explore and unify environmental monitoring datasets. In: Modelling for environment’s sake: proceedings of the 5th biennial conference of the international environmental modelling and software society, iEMSs 2010; 2010, p. 1412–1420.
Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.
Article
CAS
Google Scholar
Xiao W, Liu X, Irwin AJ, Laws EA, Wang L, Chen B, Zeng Y, Huang B. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Res. 2018;128:206–16.
Article
CAS
Google Scholar
Barker A, Kamar J, Morton A, Berlowitz D. Bridging the gap between research and practice: review of a targeted hospital inpatient fall prevention programme. Qual Saf Health Care. 2009;18:467–72.
Article
CAS
Google Scholar
Cohen Z. The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc. 1990;67:916–20.
Article
CAS
Google Scholar
Azma M, Mohamed MS, Mohamad R, Rahim RA, Ariff AB. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J. 2011;53:187–95.
Article
CAS
Google Scholar
Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, Wang G. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J Appl Phycol. 2016;29:1–11.
Google Scholar
Jones RF, Speer HL, Kury W. Studies on the growth of the red alga Porphyridium cruentum. Physiol Plant. 1963;16:636–43.
Article
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem. 1959;31:426–8.
CAS
Google Scholar
Sundqvist B, Karlsson O, Westermark U. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol. 2006;40:549–61.
Article
CAS
Google Scholar
Wang L, Qian J, Hu Z, Zheng Y, Hu W. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal Chim Acta. 2006;557:262–6.
Article
CAS
Google Scholar
Bligh ELG, Dyer WJA. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
CAS
Google Scholar
Liu X, Xiao W, Landry MR, Chiang KP, Wang L, Huang B. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems. 2016;19:832–49.
Article
CAS
Google Scholar
Chen B, Liu H, Huang B. Environmental controlling mechanisms on bacterial abundance in the South China Sea inferred from generalized additive models (GAMs). J Sea Res. 2012;72:69–76.
Article
Google Scholar
Borcard D, Gillet F, Legendre P. Numerical ecology with R. New York: Springer; 2011.
Book
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Stat Comput. 2015;1406:133–99.
Google Scholar
Hollander M, Wolfe DA. Non-parametric statistical methods. New York: Wiley; 1973.
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2018. Open access available at: http://cran.r-project.org.
Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol. 2012;121:256–62.
Article
CAS
Google Scholar
Patidar SK, Mitra M, George B, Soundarya R, Mishra S. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Bioresour Technol. 2014;172:32–40.
Article
CAS
Google Scholar
Zhao P, Yu X, Li J, Tang X, Huang Z. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng. 2014;118:72–7.
Article
CAS
Google Scholar
Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida PF, Druzian JI, Nascimento IA. From waste to energy: microalgae production in wastewater and glycerol. Appl Energy. 2013;109:283–90.
Article
CAS
Google Scholar
Leite GB, Paranjape K, Abdelaziz AEM, Hallenbeck PC. Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae. Bioresour Technol. 2015;184:123–30.
Article
CAS
Google Scholar
Jiao K, Chang J, Zeng X, Ng I, Xiao Z, Yong S, Xing T, Lu L. 5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnol Biofuels. 2017;10:168.
Article
Google Scholar
Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid. J Food Sci Technol. 2016;53:2270.
Article
CAS
Google Scholar