Godon JJ, Arcemisbéhère L, Escudié R, Harmand J, Miambi E, Steyer JP. Overview of the oldest existing set of substrate-optimized anaerobic processes: digestive tracts. Bioenergy Res. 2013;6:1063–81.
Article
Google Scholar
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–80.
Article
CAS
PubMed
Google Scholar
Kambhampati S, Eggleton P. Taxonomy and phylogenetics of isoptera. In: Abe T, Bignell DA, Higashi M, editors. Termites: evolution, sociality, symbioses and ecology. Dordrecht: Kluwer Academic Publishers; 2000. p. 1–23.
Google Scholar
Konig H, Li L, Frohlich J. The cellulolytic system of the termite gut. Appl Microbiol Biotechnol. 2013;97:7943–62.
Article
PubMed
Google Scholar
Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol. 2002;32:777–84.
Article
CAS
PubMed
Google Scholar
Tokuda G, Watanabe H, Hojo M, Fujita A, Makiya H, Miyagi M, Arakawa G, Arioka M. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J Insect Physiol. 2012;58:147–54.
Article
CAS
PubMed
Google Scholar
Tokuda G, Watanabe H, Lo N. Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene. 2007;401:131–4.
Article
CAS
PubMed
Google Scholar
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450:560–5.
Article
CAS
PubMed
Google Scholar
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE. 2013;8:e61126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz JE, Breznak JA. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1978;35:930–6.
CAS
PubMed
PubMed Central
Google Scholar
Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK. A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol. 2012;39:851–60.
Article
CAS
PubMed
Google Scholar
Azizi-Shotorkhoft A, Mohammadabadi T, Motamedi H, Chaji M, Fazaeli H. Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Anim Feed Sci Technol. 2016;221:234–42.
Article
CAS
Google Scholar
Franco Cairo JP, Leonardo FC, Alvarez TM, Ribeiro DA, Buchli F, Costa-Leonardo AM, Carazzolle MF, Costa FF, Paes Leme AF, Pereira GA, Squina FM. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnol Biofuels. 2011;4:50.
Article
PubMed
PubMed Central
Google Scholar
Kleerebezem R, van Loosdrecht MC. Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol. 2007;18:207–12.
Article
CAS
PubMed
Google Scholar
Agler MT, Wrenn BA, Zinder SH, Angenent LT. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 2011;29:70–8.
Article
CAS
PubMed
Google Scholar
Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol. 2002;59:529–34.
Article
CAS
PubMed
Google Scholar
Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour Technol. 2009;100:4821–8.
Article
CAS
PubMed
Google Scholar
Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol. 2011;102:742–7.
Article
CAS
PubMed
Google Scholar
Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, Chen J, Yang J, Liu F, Lei X, Su Q, Zhou C, Zhao J, Dong X, Jin T, Zhou X, Yang S, Zhang G, Yang H, Wang J, Yang R, Eijsink VG, Wang J. Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep. 2014;4:5288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez DJ, Dini-Andreote F, van Elsas JD. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels. 2014;7:92.
Article
PubMed
PubMed Central
Google Scholar
de Lima Brossi MJ, Jimenez DJ, Cortes-Tolalpa L, van Elsas JD. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb Ecol. 2016;71:616–27.
Article
PubMed
Google Scholar
Guo P, Zhu W, Wang H, Lu Y, Wang X, Zheng D, Cui Z. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J Microbiol Biotechnol. 2010;20:254–64.
CAS
PubMed
Google Scholar
Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol. 2010;47:283–90.
Article
CAS
Google Scholar
Lin C-W, Wu C-H, Tran D-T, Shih M-C, Li W-H, Wu C-F. Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochem. 2011;46:489–93.
Article
CAS
Google Scholar
Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R. Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol. 2011;102:9321–4.
Article
CAS
PubMed
Google Scholar
Reddy AP, Allgaier M, Singer SW, Hazen TC, Simmons BA, Hugenholtz P, VanderGheynst JS. Bioenergy feedstock-specific enrichment of microbial populations during high-solids thermophilic deconstruction. Biotechnol Bioeng. 2011;108:2088–98.
Article
CAS
PubMed
Google Scholar
Chang J-J, Lin J-J, Ho C-Y, Chin W-C, Huang C-C. Establishment of rumen-mimic bacterial consortia: a functional union for bio-hydrogen production from cellulosic bioresource. Int J Hydrogen Energy. 2010;35:13399–406.
Article
CAS
Google Scholar
Lazuka A, Auer L, Bozonnet S, Morgavi DP, O’Donohue M, Hernandez-Raquet G. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. Bioresour Technol. 2015;196:241–9.
Article
CAS
PubMed
Google Scholar
Auer L, Lazuka A, Sillam-Dusses D, Miambi E, O’Donohue M, Hernandez-Raquet G. Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Front Microbiol. 2017;8:2623.
Article
PubMed
PubMed Central
Google Scholar
Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol. 2009;59:1901–7.
Article
CAS
PubMed
Google Scholar
Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75:165–74.
Article
CAS
PubMed
Google Scholar
Eichorst SA, Joshua C, Sathitsuksanoh N, Singh S, Simmons BA, Singer SW. Substrate-specific development of thermophilic bacterial consortia by using chemically pretreated switchgrass. Appl Environ Microbiol. 2014;80:7423–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simmons CW, Reddy AP, Simmons BA, Singer SW, VanderGheynst JS. Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions. J Appl Microbiol. 2014;117:1025–34.
Article
CAS
PubMed
Google Scholar
Thomas L, Joseph A, Gottumukkala LD. Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour Technol. 2014;158:343–50.
Article
CAS
PubMed
Google Scholar
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol. 2012;23:364–81.
Article
CAS
PubMed
Google Scholar
Zened A, Combes S, Cauquil L, Mariette J, Klopp C, Bouchez O, Troegeler-Meynadier A, Enjalbert F. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol. 2013;83:504–14.
Article
CAS
PubMed
Google Scholar
Kohler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol. 2012;78:4691–701.
Article
PubMed
PubMed Central
Google Scholar
Hui W, Jiajia L, Yucai L, Peng G, Xiaofen W, Kazuhiro M, Zongjun C. Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Bioresour Technol. 2013;136:481–7.
Article
PubMed
Google Scholar
Sheng P, Huang J, Zhang Z, Wang D, Tian X, Ding J. Construction and characterization of a cellulolytic consortium enriched from the hindgut of Holotrichia parallela larvae. Int J Mol Sci. 2016;17:1646–57.
Article
PubMed Central
Google Scholar
Fengel D, Wegener G. Wood—chemistry, ultrastructure, reactions. J Polym Sci Lett Ed. 1984;23:601–2.
Google Scholar
Garrote G, Domínguez H, Parajó JC. Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Wer. 1999;57:191–202.
Article
CAS
Google Scholar
Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009;100:10–8.
Article
CAS
PubMed
Google Scholar
Lawther JM, Sun R, Banks WB. Effect of steam treatment on the chemical composition of wheat straw. Holzforschung. 1996;50:365–71.
Article
CAS
Google Scholar
Lazuka A, Roland C, Barakat A, Guillon F, O’Donohue M, Hernandez-Raquet G. Ecofriendly lignocellulose pretreatment to enhance the carboxylate production of a rumen-derived microbial consortium. Bioresour Technol. 2017;236:225–33.
Article
CAS
PubMed
Google Scholar
El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11:497–504.
Article
PubMed
Google Scholar
Pfennig N, Trüper HG. The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, editors. The prokaryotes. New York: Springer; 1992. p. 3200–21.
Chapter
Google Scholar
de Souza AC, Rietkerk T, Selin CG, Lankhorst PP. A robust and universal NMR method for the compositional analysis of polysaccharides. Carbohydr Polym. 2013;95:657–63.
Article
PubMed
Google Scholar
Monlau F, Barakat A, Steyer JP, Carrere H. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol. 2012;120:241–7.
Article
CAS
PubMed
Google Scholar
Cavaille L, Grousseau E, Pocquet M, Lepeuple AS, Uribelarrea JL, Hernandez-Raquet G, Paul E. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture. Bioresour Technol. 2013;149:301–9.
Article
CAS
PubMed
Google Scholar
Auer L, Mariadassou M, O’Donohue M, Klopp C, Hernandez-Raquet G. Analysis of large 16S rRNA Illumina data sets: impact of singleton read filtering on microbial community description. Mol Ecol Resour. 2017;17:e122–32.
Article
CAS
PubMed
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008;31:241–50.
Article
CAS
PubMed
Google Scholar
Mikaelyan A, Kohler T, Lampert N, Rohland J, Boga H, Meuser K, Brune A. Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic reference database (DictDb). Syst Appl Microbiol. 2015;38:472–82.
Article
CAS
PubMed
Google Scholar
Sievers F, Higgins DG. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 2014;1079:105–16.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
PubMed
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011;12:253.
Article
Google Scholar