Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841–5.
Article
CAS
Google Scholar
Porter JR, Howell FM, Mason PB, Blanchard TC. Existing biomass infrastructure and theoretical potential biomass production in the US. J Maps. 2009;5(1):206–18.
Article
Google Scholar
Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J-I, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y. Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol. 2012;39(12):1741–9.
Article
CAS
Google Scholar
Dondelinger E, Aubry N, Chaabane FB, Cohen C, Tayeb J, Rémond C. Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Express. 2016;6:24.
Article
Google Scholar
Sun Y, Cheng JJ. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol. 2005;96(14):1599–606.
Article
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012;109(4):1083–7.
Article
CAS
Google Scholar
Palonen H, Tjerneld F, Zacchi G, Tenkanen M. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol. 2004;107(1):65–72.
Article
CAS
Google Scholar
Harkki A, Mäntylä A, Penttilä M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H. Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb Technol. 1991;13(3):227–33.
Article
CAS
Google Scholar
Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact. 2016;15(1):106.
Article
Google Scholar
Schülein M. Cellulases of Trichoderma reesei. Methods in enzymology. 1st ed. London: Academic Press; 1988. p. 234–42.
Google Scholar
Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J-I, Kawaguchi T, Morikawa Y, et al. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng. 2012;109(1):92–9.
Article
CAS
Google Scholar
Nicholson MJ, Theodorou MK, Brookman JL. Molecular analysis of the anaerobic rumen fungus Orpinomyces—insights into an AT-rich genome. Microbiology. 2005;151(1):121–33.
Article
CAS
Google Scholar
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351(6278):1192–5.
Article
CAS
Google Scholar
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42(D1):D699–704.
Article
CAS
Google Scholar
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microb. 2017;2:17087.
Article
CAS
Google Scholar
Lowe SE, Griffith GG, Milne A, Theodorou MK, Trinci APJ. Life cycle and growth kinetics of an anaerobic rumen fungus. Microbiology. 1987;133(7):1815–27.
Article
Google Scholar
Meilan R, Ma C. Poplar (Populus spp.). In: Wang K, editor. Agrobacterium protocols, vol. 2. Totowa: Humana Press; 2007. p. 143–51.
Google Scholar
Anderson NA, Tobimatsu Y, Ciesielski PN, Ximenes E, Ralph J, Donohoe BS, Ladisch M, Chapple C. Manipulation of guaiacyl and syringyl monomer biosynthesis in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modified cell wall structure. Plant Cell. 2015;27(8):2195–209.
Article
CAS
Google Scholar
Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 2000;22(3):223–34.
Article
CAS
Google Scholar
Overend RP, Chornet E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans Roy Soc Lond A. 1987;321(1561):523–36.
Article
CAS
Google Scholar
Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16.
Article
Google Scholar
Cao G, Ximenes E, Nichols NN, Frazer SE, Kim D, Cotta MA, Ladisch M. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresour Technol. 2015;190:412–5.
Article
CAS
Google Scholar
Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL. The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology. 2005;151(5):1557.
Article
CAS
Google Scholar
Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microb. 2011;77(18):6722–5.
Article
CAS
Google Scholar
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994;48(3):185–97.
Article
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248.
Article
CAS
Google Scholar
Tseng M-J, Yap M-N, Ratanakhanokchai K, Kyu KL, Chen S-T. Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme Microb Technol. 2002;30(5):590–5.
Article
CAS
Google Scholar
Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004;88(7):832–7.
Article
CAS
Google Scholar
Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D. Preparation of samples for compositional analysis. Natl Renew Energy Lab. Report No. NREL/TP-510-42620. 2008; https://www.nrel.gov/docs/gen/fy08/42620.pdf. Accessed 22 Jan 2018.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Natl Renew Energy Lab. Report No. NREL/TP-510-42618. 2008; https://www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 22 Jan 2018.
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of extractives in biomass. Natl Renew Energy Lab. Report No. NREL/TP-510-42619. 2008; https://www.nrel.gov/docs/gen/fy08/42619.pdf. Accessed 22 Jan 2018.
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding C, Fungal Barcoding Consortium Author L, Bolchacova E, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci. 2012;109(16):6241–6.
Article
CAS
Google Scholar
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1(1):e00009-15.
Article
Google Scholar
Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J. 2010;4(10):1225–35.
Article
Google Scholar
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90(1):1–17.
Article
CAS
Google Scholar
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K. Anaerobic fungi and their potential for biogas production. Adv Biochem Eng Biotechnol. 2015;151:41–61.
CAS
PubMed
Google Scholar
Juhász T, Egyházi A, Réczey K. β-Glucosidase production by Trichoderma reesei. Appl Biochem Biotechnol. 2005;121(1):243.
Article
Google Scholar
Mikkelsen D, Flanagan BM, Wilson SM, Bacic A, Gidley MJ. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks. Biomacromolecules. 2015;16(4):1232.
Article
CAS
Google Scholar
Edwards MC, Doran-Peterson J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol. 2012;95(3):565–75.
Article
CAS
Google Scholar
Mohnen D. Pectins and their manipulation. In: Knox GSAJ, editor. Biosynthesis of pectins. Oxford: Blackwell Publishing, Ltd; 2002.
Google Scholar
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–77.
Article
CAS
Google Scholar
Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;43(4):777–80.
CAS
PubMed
PubMed Central
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–86.
Article
CAS
Google Scholar
Kumar D, Murthy GS. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels. 2011;4(1):27.
Article
CAS
Google Scholar
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity a key predictor of the enzymatic hydrolysis rate. FEBS J. 2010;277(6):1571–82.
Article
CAS
Google Scholar
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. 2010;3(1):10.
Article
Google Scholar
Peciulyte A, Karlström K, Larsson PT, Olsson L. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels. 2015;8(1):56.
Article
Google Scholar
Barbehenn R, Bernays E. Relative nutritional quality of C3 and C4 grasses for a graminivorous lepidopteran, Paratrytone melane (Hesperiidae). Oecologia. 1992;92(1):97–103.
Article
Google Scholar
Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK. Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels. 2017;10(1):146.
Article
Google Scholar
Rao PS, Kumar CG, Prakasham RS, Rao AU, Reddy BVS. Sweet sorghum: breeding and bioproducts. In: Cruz VMV, Dierig DA, editors. Industrial crops: breeding for bioenergy and bioproducts. New York: Springer; 2015. p. 1–28.
Google Scholar
Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci. 2005;24(5–6):423–59.
Article
Google Scholar
Littlewood J, Guo M, Boerjan W, Murphy RJ. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnol Biofuels. 2014;7:113.
Article
Google Scholar
Balatinecz JJKD. Properties and utilization of poplar wood. Ontario: Canadian Science Publishing NRC Research Press; 2001.
Google Scholar
Wiselogel A, Tyson S, Johnson D. Biomass feedstock resources and composition. In: Wyman C, editor. Handbook on bioethanol: production and utilization. London: Taylor and Francis; 1996.
Google Scholar
Kim Y, Mosier NS, Ladisch MR. Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog. 2009;25:340–8.
Article
CAS
Google Scholar
Christersson L. Wood production potential in poplar plantations in Sweden. Biomass Bioenergy. 2010;34:1289–99.
Article
Google Scholar
Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Biorefin. 2007;1(2):119–34.
Article
Google Scholar
Joblin KN, Naylor GE. Fermentation of woods by rumen anaerobic fungi. FEMS Microbiol Lett. 1989;65(1):119–22.
Article
CAS
Google Scholar
Skyba O, Douglas C, Mansfield S. Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microb. 2013;79(8):2560.
Article
CAS
Google Scholar
Kim TH, Kim JS, Sunwoo C, Lee YY. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol. 2003;90:39–47.
Article
CAS
Google Scholar
Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Biorefin. 2008;2(1):26–40.
Article
CAS
Google Scholar
Jönsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.
Article
Google Scholar
Kim SM, Dien BS, Tumbleson ME, Rausch KD, Singh V. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresour Technol. 2016;216:706–13.
Article
CAS
Google Scholar
Henske J, Wilken SE, Solomon KV, Smallwood CR, Shutthanandan V, Evans JE, Theodorou MK, O’Malley MA. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol Bioeng. 2018;115(4):874–84.
Article
CAS
Google Scholar
Rodrigues AC, Haven MØ, Lindedam J, Felby C, Gama M. Celluclast and Cellic® CTec2: saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol. 2015;79–80:70–7.
Article
Google Scholar
Hu J, Arantes V, Saddler JN. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels. 2011;4:36.
Article
CAS
Google Scholar
Chahal DS, McGuire S, Pikor H, Noble G. Production of cellulase complex by Trichoderma reesei Rut-C30 on lignocellulose and its hydrolytic potential. Biomass. 1982;2(2):127–37.
Article
CAS
Google Scholar
Montenecourt BS, Eveleigh DE. Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis. Washington, DC: American Chemical Society; 1979. p. 289–301.
Chapter
Google Scholar
Nevalainen KM. Induction, isolation, and characterization of Aspergillus niger mutant strains producing elevated levels of beta-galactosidase. Appl Envir Microb. 1981;41(3):593–6.
CAS
Google Scholar
Mohanram S, Amat D, Choudhary J, Arora A, Nain L. Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Proc. 2013;1(1):15.
Article
Google Scholar