Intergovernmental Panel on Climate Change, editor. Climate Change 2013—the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change [Internet]. Cambridge: Cambridge University Press; 2014. http://ebooks.cambridge.org/ref/id/CBO9781107415324. Accessed 29 May 2015.
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.
Article
CAS
Google Scholar
Humbird D. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover [Internet]. 2011. http://dx.doi.org/10.2172/1013269.
Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 2014;32:46–53.
Article
CAS
Google Scholar
Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high-solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111:59–68.
Article
CAS
Google Scholar
Di Risio S, Hu CS, Saville BA, Liao D, Lortie J. Large-scale, high-solids enzymatic hydrolysis of steam-exploded poplar. Biofuels Bioprod Biorefining. 2011;5:609–20.
Article
Google Scholar
Iii JS, Kuhn EM, Nagle NJ, Tucker MP, Elander RT, Schell DJ. Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels. 2014;7:23.
Article
Google Scholar
Pereira FB, Guimarães PMR, Teixeira JA, Domingues L. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett. 2010;32:1655–61.
Article
CAS
Google Scholar
Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng. 2007;96:862–70.
Article
Google Scholar
Kristensen JB, Felby C, Jørgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009;2:11.
Article
Google Scholar
Modenbach AA, Nokes SE. Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenergy. 2013;56:526–44.
Article
CAS
Google Scholar
Geng W, Jin Y, Jameel H, Park S. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresour Technol. 2015;187:43–8.
Article
CAS
Google Scholar
Hodge DB, Karim MN, Schell DJ, McMillan JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol. 2008;99:8940–8.
Article
CAS
Google Scholar
Hsieh CC, Cannella D, Jørgensen H, Felby C, Thygesen LG. Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem. 2014;62:3800–5.
Article
CAS
Google Scholar
Lavenson DM, Tozzi EJ, Karuna N, Jeoh T, Powell RL, McCarthy MJ. The effect of mixing on the liquefaction and saccharification of cellulosic fibers. Bioresour Technol. 2012;111:240–7.
Article
CAS
Google Scholar
Hoyer K, Galbe M, Zacchi G. The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochem. 2013;48:289–93.
Article
CAS
Google Scholar
Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high-solids loadings. Cellulose. 2011;18:759–73.
Article
CAS
Google Scholar
Du J, Cao Y, Liu G, Zhao J, Li X, Qu Y. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour Technol. 2017;229:88–95.
Article
CAS
Google Scholar
Selig MJ, Thygesen LG, Johnson DK, Himmel ME, Felby C, Mittal A. Hydration and saccharification of cellulose Iβ, II and IIII at increasing dry solids loadings. Biotechnol Lett. 2013;35:1599–607.
Article
CAS
Google Scholar
Selig MJ, Hsieh CWC, Thygesen LG, Himmel ME, Felby C, Decker SR. Considering water availability and the effect of solute concentration on high-solids saccharification of lignocellulosic biomass. Biotechnol Prog. 2012;28:1478–90.
Article
CAS
Google Scholar
Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol. 2014;19:162–70.
Article
CAS
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013;127:500–7.
Article
CAS
Google Scholar
Hu J, Chandra R, Arantes V, Gourlay K, van Dyk JS, Saddler JN. The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol. 2015;186:149–53.
Article
CAS
Google Scholar
Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci. 2011;108:15079–84.
Article
CAS
Google Scholar
Mosier N. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.
Article
CAS
Google Scholar
Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, et al. Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): corn stover pretreatment. Cellulose. 2009;16:649–59.
Article
CAS
Google Scholar
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.
Article
CAS
Google Scholar
Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.
Article
CAS
Google Scholar
Carles JE, Scallan AM. The determination of the amount of bound water within cellulosic gels by NMR spectroscopy. J Appl Polym Sci. 1973;17:1855–65.
Article
CAS
Google Scholar
Froix MF, Nelson R. The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules. 1975;8:726–30.
Article
CAS
Google Scholar
Menon RS, MaCkay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS. An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci. 1987;33:1141–55.
Article
CAS
Google Scholar
Flibotte S, Menon RS, MacKay AL, Hailey JRT. Proton magnetic resonance of western red cedar. Wood Fiber Sci. 2007;22:362–76.
Google Scholar
Fredriksson M, Thygesen LG. The states of water in Norway spruce (Picea abies (L.) Karst.) studied by low-field nuclear magnetic resonance (LFNMR) relaxometry: assignment of free-water populations based on quantitative wood anatomy. Holzforschung. 2016;71:77–90.
Google Scholar
Araujo CD, MacKay AL, Hailey JRT, Whittall KP, Le H. Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci Technol. 1992;26:101–13.
Article
CAS
Google Scholar
Araujo CD, Mackay AL, Whittall KP, Hailey JRT. A diffusion model for spin-spin relaxation of compartmentalized water in wood. J Magn Reson B. 1993;101:248–61.
Article
CAS
Google Scholar
Tsuchida JE, Rezende CA, Oliveira-Silva R, Lima MA, D’Eurydice MN, Polikarpov I, et al. 1H NMR Investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels. 2014;7:127.
PubMed
PubMed Central
Google Scholar
Weiss ND, Thygesen LG, Felby C, Roslander C, Gourlay K. Biomass–water interactions correlate to recalcitrance and are intensified by pretreatment: an investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques. Biotechnol Prog. 2017;33:146–53.
Article
CAS
Google Scholar
Olsen SN, Borch K, Cruys-Bagger N, Westh P. The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol. 2014;174:146–55.
Article
CAS
Google Scholar
Ko JK, Um Y, Park Y-C, Seo J-H, Kim KH. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol. 2015;99:4201–12.
Article
CAS
Google Scholar
Djajadi DT, Hansen AR, Jensen A, Thygesen LG, Pinelo M, Meyer AS, et al. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks. Biotechnol Biofuels. 2017;10:49.
Article
Google Scholar
Jeoh T, Karuna N, Weiss ND, Thygesen LG. Two-dimensional 1H-nuclear magnetic resonance relaxometry for understanding biomass recalcitrance. ACS Sustain Chem Eng. 2017;5:8785–95.
Article
CAS
Google Scholar
Williams DL, Hodge DB. Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding. Cellulose. 2014;21:221–35.
Article
CAS
Google Scholar
Williams DL, Crowe JD, Ong RG, Hodge DB. Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields. Bioresour Technol. 2017;245:242–9.
Article
CAS
Google Scholar
Nakagame S, Chandra RP, Saddler JN. The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. ACS Symp Ser Vol1067. 2011;145–67.
Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog. 2007;23:1333–9.
Article
CAS
Google Scholar
Djajadi DT, Jensen MM, Oliveira M, Jensen A, Thygesen LG, Pinelo M, et al. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes. Biotechnol Biofuels. 2018;11:85.
Article
Google Scholar
Hansen MAT, Kristensen JB, Felby C, Jørgensen H. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.)—the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour Technol. 2011;102:2804–11.
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tempelton J, et al. Determination of structural carbohydrates and lignin in biomass. 2008. Report No.: NREL/TP-510-42618.
Kumar R, Hu F, Hubbell CA, Ragauskas AJ, Wyman CE. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Technol. 2013;130:372–81.
Article
CAS
Google Scholar
Scott BR, Huang HZ, Frickman J, Halvorsen R, Johansen KS. Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotechnol Lett. 2016;38:425–34.
Article
CAS
Google Scholar
Kristensen JB, Felby C, Jørgensen H. Determining yields in high-solids enzymatic hydrolysis of biomass. Appl Biochem Biotechnol. 2009;156:127–32.
Article
Google Scholar
Whittall KP, Bronskill MJ, Henkelman RM. Investigation of analysis techniques for complicated NMR relaxation data. J Magn Reson. 1969;1991(95):221–34.
Google Scholar
Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.
Article
CAS
Google Scholar