Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol. 2010;101(19):7201–10.
Article
CAS
PubMed
Google Scholar
Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B. Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng. 2009;33(5):1091–6.
Article
CAS
Google Scholar
Wang L, Yu H. Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil. Bioresour Technol. 2012;112:355–8.
Article
CAS
PubMed
Google Scholar
Fan S, Liang T, Yu H, Bi Q, Li G, Wang L. Kernel characteristics, oil contents, fatty acid compositions and biodiesel properties in developing Siberian apricot (Prunus sibirica L.) seeds. Ind Crop Prod. 2016;89:195–9.
Article
CAS
Google Scholar
Yu H, Fan S, Bi Q, Wang S, Hu X, Chen M, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production. Ind Crop Prod. 2017;97:425–30.
Article
CAS
Google Scholar
Yu HY, Zhou S. Preparation of biodiesel from Xanthoceras sorblfolia Bunge seed oil. China Oils Fats. 2009;3:43–5.
Google Scholar
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, et al. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. Biotechnol Biofuels. 2017;10(1):134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang LB. Properties of Manchurian apricot (Prunus mandshurica Skv.) and Siberian apricot (Prunus sibirica L.) seed kernel oils and evaluation as biodiesel feedstocks. Ind Crop Prod. 2013;50:838–43.
Article
CAS
Google Scholar
Zhang J. Chinese Fruit Species. Apricot Volume. Beijing: China Forestry Publishing House; 2003. p. 627.
Google Scholar
Wang L. Resource investigation and distribute regular of three Armeniaca species. Forest Resour Manage. 2011;5:65–70.
CAS
Google Scholar
Niu J, An JY, Wang LB, Fang CL, Ha DL, Fu CY, et al. Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot (Prunus sibirica L.) seed kernels for the development of woody biodiesel. Biotechnol Biofuels. 2015;8(1):29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang L, Chu J. Optimization of biodiesel production from Siberian Apricot (Prunus sibirica L.) oil using response surface methodology. Asian J Chem. 2013;25(5):2577.
Article
CAS
Google Scholar
Wang R, Hanna MA, Zhou WW, Bhadury PS, Chen Q, Song BA, et al. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour Technol. 2011;102(2):1194–9.
Article
CAS
PubMed
Google Scholar
Guo J, Li H, Fan S, Liang T, Yu H, Li J, et al. Genetic variability of biodiesel properties in some Prunus L. (Rosaceae) species collected from Inner Mongolia, China. Ind Crop Prod. 2015;76:244–8.
Article
CAS
Google Scholar
Wang L. Evaluation of Siberian Apricot (Prunus sibirica L.) germplasm variability for biodiesel properties. J Am Oil Chem Soc. 2012;89(9):1743–7.
Article
CAS
Google Scholar
Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16(3):358–64.
Article
CAS
PubMed
Google Scholar
Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A. 2011;108(30):12527–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturm A, Tang G-Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999;4(10):401–7.
Article
CAS
PubMed
Google Scholar
Martinoia E, Maeshima M, Neuhaus HE. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007;58(1):83–102.
Article
CAS
PubMed
Google Scholar
Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog Lipid Res. 2002;41(2):182–96.
Article
CAS
PubMed
Google Scholar
Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Biol. 1996;47(1):185–214.
Article
CAS
Google Scholar
Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A, Naik D, et al. Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture. Plant Physiol. 2015;168(3):828–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunn JE. Compartmentation in plant metabolism. J Exp Bot. 2007;58(1):35–47.
Article
CAS
PubMed
Google Scholar
Linka N, Weber AP. Intracellular metabolite transporters in plants. Mol Plant. 2010;3(1):21–53.
Article
CAS
PubMed
Google Scholar
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic. 2014;15(9):915–32.
Article
CAS
PubMed
Google Scholar
Kirchberger S, Tjaden J, Ekkehard Neuhaus H. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Plant J. 2008;56(1):51–63.
Article
CAS
PubMed
Google Scholar
Leroch M, Kirchberger S, Haferkamp I, Wahl M, Neuhaus HE, Tjaden J. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J Biol Chem. 2005;280(18):17992–8000.
Article
CAS
PubMed
Google Scholar
Reiser J, Linka N, Lemke L, Jeblick W, Neuhaus HE. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis. Plant Physiol. 2004;136(3):3524–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tjaden J, Möhlmann T, Kampfenkel K. Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J. 1998;16(5):531–40.
Article
CAS
Google Scholar
Weber AP, Schwacke R, Flügge U-I. Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol. 2005;56:133–64.
Article
PubMed
CAS
Google Scholar
Eicks M, Maurino V, Knappe S, Flügge U-I, Fischer K. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 2002;128(2):512–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knappe S, Löttgert T, Schneider A, Voll L, Flügge UI, Fischer K. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J. 2003;36(3):411–20.
Article
CAS
PubMed
Google Scholar
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2008;1778(10):1978–2021.
Article
CAS
Google Scholar
Palmieri L, Santoro A, Carrari F, Blanco E, Nunes-Nesi A, Arrigoni R, et al. Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter from Arabidopsis. Plant Physiol. 2008;148(4):1797–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J. 2008;410(3):621–9.
Article
CAS
PubMed
Google Scholar
Kim S, Yamaoka Y, Ono H, Kim H, Shim D, Maeshima M, et al. AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2013;110(2):773–8.
Article
CAS
PubMed
Google Scholar
Graham IA. Seed storage oil mobilization. Annu Rev Plant Biol. 2008;59:115–42.
Article
CAS
PubMed
Google Scholar
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid β-oxidation in soybean and Arabidopsis. Plant Cell. 2008;20(12):3227–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Chye M-L. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res. 2011;50(2):141–51.
Article
CAS
PubMed
Google Scholar
Yurchenko OP, Nykiforuk CL, Moloney MM, Ståhl U, Banaś A, Stymne S, et al. A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J. 2009;7(7):602–10.
Article
CAS
PubMed
Google Scholar
Edstam MM, Edqvist J. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiol Plant. 2014;152(1):32–42.
Article
CAS
PubMed
Google Scholar
Engeseth NJ, Pacovsky RS, Newman T, Ohlrogge JB. Characterization of an Acyl-CoA-Binding Protein from Arabidopsis thaliana. Arch Biochem Biophys. 1996;331(1):55–62.
Article
CAS
PubMed
Google Scholar
Brown AP, Johnson P, Rawsthorne S, Hills MJ. Expression and properties of acyl-CoA binding protein from Brassica napus. Plant Physiol Biochem. 1998;36(9):629–35.
Article
CAS
Google Scholar
Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, et al. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol. 2010;186(4):843–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yurchenko O, Singer SD, Nykiforuk CL, Gidda S, Mullen RT, Moloney MM, et al. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds. Plant Physiol. 2014;165(2):550–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Li H-Y, Zhang J-P, Chan S-W, Chye M-L. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol. 2008;68(6):571–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Chen Q-F, Chye M-L. Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester. Plant Physiol Biochem. 2009;47(10):926–33.
Article
CAS
PubMed
Google Scholar
Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, et al. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol. 2015;13(2):e1002053.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong SB, Liu YL, Niu J, Ning Y, Lin SZ, Zhang ZX. De novo transcriptome analysis of the Siberian apricot (Prunus sibirica L.) and search for potential SSR markers by 454 pyrosequencing. Gene. 2014;544(2):220–7.
Article
CAS
PubMed
Google Scholar
Wang LB, Yu HY, He XH, Liu RY. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. J Fuel Chem Technol. 2012;40(4):397–404.
Article
CAS
Google Scholar
Lou D, Shen H, Hu Z, Tan P, Li B. Research on performance of diesel engine operating on different biodiesel blends. Chin Inter Combust Engine Eng. 2011;32(1):29–33.
CAS
Google Scholar
Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–8.
Article
CAS
PubMed
Google Scholar
Lin C-Y, Lin H-A, Hung L-B. Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel. 2006;85(12–13):1743–9.
Article
CAS
Google Scholar
Neuhaus HE. Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett. 2007;581(12):2223–6.
Article
CAS
PubMed
Google Scholar
Leroch M, Neuhaus HE, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, et al. Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell. 2008;20(2):438–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes F, León G, Donoso M, Brandizzí F, Weber AP, Orellana A. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J. 2010;61(3):423–35.
Article
CAS
PubMed
Google Scholar
Xiao S, Chye M-L. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem. 2009;47(6):479–84.
Article
CAS
PubMed
Google Scholar
Yurchenko OP, Weselake RJ. Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. New Biotechnol. 2011;28(2):97–109.
Article
CAS
Google Scholar
Roston RL, Gao J, Murcha MW, Whelan J, Benning C. TGD1,-2, and-3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem. 2012;287(25):21406–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT. The sucrose transporter gene family in rice. Plant Cell Physiol. 2003;44(3):223–32.
Article
CAS
PubMed
Google Scholar
Aoki N, Whitfeld P, Hoeren F, Scofield G, Newell K, Patrick J, et al. Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Mol Biol. 2002;50(3):453–62.
Article
CAS
PubMed
Google Scholar
Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007;581(12):2309–17.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhang S, Qin G, Wang L, Wu T, Qi K, et al. Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit. Plant Physiol Biochem. 2013;73:63–9.
Article
CAS
PubMed
Google Scholar
Zanon L, Falchi R, Santi S, Vizzotto G. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types. Physiol Plant. 2015;154(2):179–93.
Article
CAS
PubMed
Google Scholar
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell. 2006;18(12):3476–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, et al. Comparative deep transcriptional profiling of four developing oilseeds. Plant J. 2011;68(6):1014–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, et al. A non-invasive platform for imaging and quantifying oil storage in sub-millimetre tobacco seed. Plant Physiol. 2013;161(2):583–93.
Article
CAS
PubMed
Google Scholar
Lee E-J, Oh M, Hwang J-U, Li-Beisson Y, Nishida I, Lee Y. Seed-specific overexpression of the pyruvate transporter BASS2 increases oil content in Arabidopsis seeds. Front Plant Sci. 2017;8:194.
PubMed
PubMed Central
Google Scholar
Andriotis VM, Kruger NJ, Pike MJ, Smith AM. Plastidial glycolysis in developing Arabidopsis embryos. New Phytol. 2010;185(3):649–62.
Article
CAS
PubMed
Google Scholar
Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature. 2004;432(7018):779–82.
Article
CAS
PubMed
Google Scholar
Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J. 2007;52(2):296–308.
Article
CAS
PubMed
Google Scholar
Ruuska SA, Schwender J, Ohlrogge JB. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004;136(136):2700–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rausch C, Zimmermann P, Amrhein N, Bucher M. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2; 1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J. 2004;39(1):13–28.
Article
CAS
PubMed
Google Scholar
Guo B, Jin Y, Wussler C, Blancaflor E, Motes C, Versaw WK. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 2008;177(4):889–98.
Article
CAS
PubMed
Google Scholar
Tian Y, Lv X, Xie G, Zhang J, Xu Y, Chen F. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis. Biochem Biophys Res Commun. 2018;500(2):370–5.
Article
CAS
PubMed
Google Scholar
Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem. 2002;40(2):151–60.
Article
CAS
Google Scholar
Chia TY, Pike MJ, Rawsthorne S. Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot. 2005;56(415):1285–96.
Article
CAS
PubMed
Google Scholar
Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J. 2013;11(3):355–61.
Article
CAS
PubMed
Google Scholar
Footitt S, Marquez J, Schmuths H, Baker A, Theodoulou FL, Holdsworth M. Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot. 2006;57(11):2805–14.
Article
CAS
PubMed
Google Scholar
Catoni E, Schwab R, Hilpert M, Desimone M, Schwacke R, Flügge U-I, et al. Identification of an Arabidopsis mitochondrial succinate-fumarate translocator. FEBS Lett. 2003;534(1–3):87–92.
Article
CAS
PubMed
Google Scholar
Eastmond PJ. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 2006;18(3):665–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, et al. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 2002;21(12):2912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol. 2001;127(3):1266–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels. 2014;7(1):36.
Article
PubMed
PubMed Central
Google Scholar
El-Kouhen K, Blangy S, Ortiz E, Gardies A-M, Ferté N, Arondel V. Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett. 2005;579(27):6067–73.
Article
CAS
PubMed
Google Scholar
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, et al. Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell. 2008;20(12):3241–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu J, Zhu B, Cai J, Li P, Wang L, Dai H, et al. Selection of reference genes for gene expression studies in Siberian Apricot (Prunus sibirica L.) germplasm using Quantitative Real-Time PCR. PloS ONE. 2014;9(8):e103900.
Article
PubMed
PubMed Central
CAS
Google Scholar