Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol. 2001;183:101–8.
Article
CAS
Google Scholar
Jenney FE, Verhagen MF, Cui X, Adams MW. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science. 1999;286:306–9.
Article
CAS
Google Scholar
Hall IC. A review of the development and application of physical and chemical principles in the cultivation of obligately anaerobic bacteria. J Bacteriol. 1929;17:255–301.
CAS
PubMed
PubMed Central
Google Scholar
Börner RA. Isolation and cultivation of anaerobes. In: Hatti-Kaul R, Mamo G, Mattiasson B, editors. In anaerobes in biotechnology. Cham: Springer; 2016. p. 35–53.
Chapter
Google Scholar
Patnaik BK, Kara TC, Ghosh SN, Dalai AK. Microbial physiology, pathogenesis and genetics. In: Textbook of biotechnology. NewDelhi: McGraw-Hill education; 2012. p. 6.1–16.
Wiegel J, Ljungdahl LG, Demain AL. The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol. 1985;3:39–108.
Article
Google Scholar
Kengen SWM, Gorrissen HP, Verhaart M. Biological hydrogen production by anaerobic microorganisms. In: Soetaert W, Vandamme EJ, editors. In Biofuels. Chichester: Wiley; 2009. p. 197–221.
Chapter
Google Scholar
Verhaart MRA, Bielen AAM, Van Der Oost J, Stams AJM, Kengen SWM. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol. 2010;31:993–1003.
Article
CAS
Google Scholar
Bae SS, Kim YJ, Yang SH, Lim JK, Jeon JH, Lee HS, Kang SG, Kim SJ, Lee J-H. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J Microbiol Biotechnol. 2006;16:1826–31.
CAS
Google Scholar
Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha S-S, Kim S-J, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee J-H, Kang SG. Formate-driven growth coupled with H2 production. Nature. 2010;467:352–5.
Article
CAS
Google Scholar
Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ, Kim MS, Lee J-H, Kang SG. H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol Lett. 2012;34:75–9.
Article
CAS
Google Scholar
Ergal İ, Fuchs W, Hasibar B, Thallinger B, Bochmann G, Rittmann SK-MR. The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 2018;36:2165–86.
Article
CAS
Google Scholar
Calusinska M, Happe T, Joris B, Wilmotte A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology. 2010;156:1575–88.
Article
CAS
Google Scholar
Rittmann SK-MR, Lee HS, Lim JK, Kim TW, Lee J-H, Kang SG. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity. Biotechnol Adv. 2015;33:165–77.
Article
CAS
Google Scholar
Schuchmann K, Müller V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science. 2013;342:1382–5.
Article
CAS
Google Scholar
Kottenhahn P, Schuchmann K, Müller V. Efficient whole cell biocatalyst for formate-based hydrogen production. Biotechnol Biofuels. 2018;11:93.
Article
Google Scholar
Schwarz FM, Schuchmann K, Müller V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol Biofuels. 2018;11:237.
Article
Google Scholar
Kim M-S, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, Choi AR, Jeon JH, Lee J-H, Lee HS, Kang SG. CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Appl Environ Microbiol. 2013;79:2048–53.
Article
CAS
Google Scholar
Kim TW, Bae SS, Lee JW, Lee S-M, Lee J-H, Lee HS, Kang SG. A biological process effective for the conversion of CO-containing industrial waste gas to acetate. Bioresour Technol. 2016;211:792–6.
Article
CAS
Google Scholar
Kim M-S, Choi AR, Lee SH, Jung H-C, Bae SS, Yang T-J, Jeon JH, Lim JK, Youn H, Kim TW, Lee HS, Kang SG. A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Appl Environ Microbiol. 2015;81:1708–14.
Article
Google Scholar
Lee SH, Kim M-S, Bae SS, Choi AR, Lee JW, Kim TW, Lee J-H, Lee HS, Kang SG. Comparison of CO-dependent H2 production with strong promoters in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol. 2014;98:979–86.
Article
CAS
Google Scholar
Lee SH, Kim M-S, Lee J-H, Kim TW, Bae SS, Lee S-M, Jung HC, Yang T-J, Choi AR, Cho Y-J, Lee J-H, Kwon KK, Lee HS, Kang SG. Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci Rep. 2016;6:22896.
Article
CAS
Google Scholar
Jung H-C, Lee SH, Lee S-M, An YJ, Lee J-H, Lee HS, Kang SG. Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate. Sci Rep. 2017;7:6124.
Article
Google Scholar
Bae SS, Lee HS, Jeon JH, Lee J-H, Kang SG, Kim TW. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst Eng. 2015;38:989–93.
Article
CAS
Google Scholar
Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007;107:4206–72.
Article
CAS
Google Scholar
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev. 2014;114:4081–148.
Article
CAS
Google Scholar
Jeon JH, Lim JK, Kim M-S, Yang T-J, Lee SH, Bae SS, Kim YJ, Lee SH, Lee J-H, Kang SG, Lee HS. Characterization of the frhAGB-encoding hydrogenase from a non-methanogenic hyperthermophilic archaeon. Extremophiles. 2015;19:109–18.
Article
CAS
Google Scholar
Lee SH, Kim M-S, Kim YJ, Kim TW, Kang SG, Lee HS. Transcriptomic profiling and its implications for the H2 production of a non-methanogen deficient in the frhAGB-encoding hydrogenase. Appl Microbiol Biotechnol. 2017;101:5081–8.
Article
CAS
Google Scholar
Baumgarten A, Redenius I, Kranczoch J, Cypionka H. Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol. 2001;176:306–9.
Article
CAS
Google Scholar
Fournier M, Dermoun Z, Durand M-C, Dolla A. A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem. 2004;279:1787–93.
Article
CAS
Google Scholar
Tremblay PL, Lovley DR. Role of the NiFe hydrogenase hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.
Article
CAS
Google Scholar
Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA. 1998;95:12474–9.
Article
CAS
Google Scholar
Ashby MK. Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea. 2006;2:11–30.
Article
CAS
Google Scholar
Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA. The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles. 2004;8:317–23.
Article
CAS
Google Scholar