Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD. Biofuel alternatives to ethanol. Trends Biotechnol. 2008;19:553–66.
Google Scholar
Burk MJ, Dien VS. Biotechnology for chemical production: challenges and oppportunities. Trends Biotechnol. 2016;34:187–90.
Article
CAS
PubMed
Google Scholar
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol. 2017;47:67–82.
Article
CAS
PubMed
Google Scholar
Schwechheimer SK, Becker J, Wittmann C. Towards better understanding of industrial cell factories: novel approaches for 13C metabolic flux analysis in complex nutrient environments. Curr Opin Biotechnol. 2018;54:128–37.
Article
CAS
PubMed
Google Scholar
Nielsen J. Systems biology of metabolism. Annu Rev Biochem. 2017;86:245.
Article
CAS
PubMed
Google Scholar
Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baidoo E, Wang G, Petzold CJ, Mccloskey D, Monk J, Yang L. Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell Syst. 2016;2:335–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2016;9:209.
Article
PubMed
PubMed Central
Google Scholar
Sauer U. Metabolic networks in motion. 13C-based flux analysis. Mol Syst Biol. 2006;2:62.
Article
PubMed
PubMed Central
Google Scholar
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng. 2014;111:575–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao R, Xiong D, Hu H, Masataka W, Yu W, Zhang X, Kazuyuki S. Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and 13C metabolic flux analysis. Biotechnol Biofuels. 2016;9:175.
Article
PubMed
PubMed Central
Google Scholar
Okahashi N, Matsuda F, Yoshikawa K, Shirai T, Matsumoto Y, Wada M, Shimizu H. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with 13C-metabolic flux analysis. Biotechnol Bioeng. 2017;114:2782–93.
Article
CAS
PubMed
Google Scholar
Wasylenko TM, Ahn WS, Stephanopoulos G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng. 2015;30:27–39.
Article
CAS
PubMed
Google Scholar
Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD. Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metab Eng. 2017;42:9–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, Dev I, Nhan M, Gin J, Apel AR. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng. 2017;42:115–25.
Article
PubMed
Google Scholar
Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. 13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol. 2014;179:42–9.
Article
CAS
PubMed
Google Scholar
Klein T, Lange S, Wilhelm N, Bureik M, Yang TH, Heinzle E, Schneider K. Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe-a quantitative approach using 13C-based metabolic flux analysis. Metab Eng. 2014;21:34–45.
Article
CAS
PubMed
Google Scholar
Mohamad MH, Awang R, Yunus WMZW. A review of acetol: application and production. Am J Appl Sci. 2011;8:1135–9.
Article
CAS
Google Scholar
Soucaille Philippe, Voelker Francois, Figge Rainer. Metabolically engineered microorganism useful for the production of acetol. WO 2008/116851.
Chiu CW, Tekeei A, Sutterlin WR, Ronco JM, Suppes GJ. Low-pressure packed-bed gas phase conversion of glycerol to acetol. AIChE J. 2010;54:2456–63.
Article
Google Scholar
Yamaguchi A, Hiyoshi N, Sato O, Shirai M. Dehydration of triol compounds in high-temperature liquid water under high-pressure carbon dioxide. Top Catal. 2010;53:487–91.
Article
CAS
Google Scholar
Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X. Production of acetol from glycerol using engineered Escherichia coli. Bioresour Technol. 2013;149:238–43.
Article
CAS
PubMed
Google Scholar
Yao R, Liu Q, Hu H, Wood TK, Zhang X. Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Appl Microbiol Biotechnol. 2015;99:7945–52.
Article
CAS
PubMed
Google Scholar
Soucaille P, Voelker F, Figge R. 2008. Metabolically engineered microorganism useful for the production of acetol. WO 2008/116851.
Saini M, Wang ZW, Chiang C, Chao Y. Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol. Biotechnol Biofuels. 2017;10:173.
Article
PubMed
PubMed Central
Google Scholar
Lee JH, Jung MY, Oh MK. High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol Biofuels. 2018;11:104.
Article
PubMed
PubMed Central
Google Scholar
Toya Y, Ohashi S, Shimizu H. Optimal 13C-labeling of glycerol carbon source for precise flux estimation in Escherichia coli. J Biosci Bioeng. 2018;125:301–5.
Article
CAS
PubMed
Google Scholar
Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613–9.
Article
CAS
PubMed
Google Scholar
Kawai S, Mori S, Mukai T, Hashimoto W, Murata K. Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem. 2010;268:4359–65.
Article
Google Scholar
Lee HC, Kim JS, Jang W, Kim SY. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149:24–32.
Article
CAS
PubMed
Google Scholar
Xu M, Qin J, Rao Z, You H, Zhang X, Yang T, Wang X, Xu Z. Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact. 2016;15:15.
Article
PubMed
PubMed Central
Google Scholar
Shi F, Huan X, Wang X, Ning J. Overexpression of NAD kinases improves the l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb Technol. 2012;51:73–80.
Article
CAS
PubMed
Google Scholar
Cui YY, Ling C, Zhang YY, Huang J, Liu JZ. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact. 2014;13:21.
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Yuan Q, Yang X, Ma H. Engineering Escherichia coli for poly-(3 hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb Technol. 2017;106:60–6.
Article
CAS
PubMed
Google Scholar
Chen PW, Theisen MK, Liao JC. Metabolic systems modeling for cell factories improvement. Curr Opin Biotechnol. 2017;46:114–9.
Article
CAS
PubMed
Google Scholar
Li W, Wu H, Li M, San KY. Effect of NADPH availability on free fatty acid production in E coli. Biotechnol Bioeng. 2018;115:444–52.
Article
CAS
PubMed
Google Scholar
Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS ONE. 2014;9:e93815.
Article
PubMed
PubMed Central
Google Scholar
Partow S, Hyland PB, Mahadevan R. Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae. Metab Eng. 2017;43:64–70.
Article
CAS
PubMed
Google Scholar
Seol E, Sekar BS, Raj SM, Park S. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli-from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway. Biotechnol J. 2016;11:249–56.
Article
CAS
PubMed
Google Scholar
Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
Article
CAS
PubMed
Google Scholar
Shi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin. 2009;41:352–61.
Article
CAS
PubMed
Google Scholar
Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006;72:3653–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii Nobuyoshi, Nakahigashi Kenji, Baba Tomoya, Robert Martin, Soga Tomoyoshi, Kanai Akio, Hirasawa Takashi, Naba Miki, Hirai Kenta, et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 2007;316:593–7.
Article
CAS
PubMed
Google Scholar
Liu N, Qiao K, Stephanopoulos G. 13C metabolic Flux analysis of acetate conversion to lipids by Yarrowia lipolytica. Metab Eng. 2016;38:86–97.
Article
CAS
PubMed
Google Scholar
Haverkon van Rijsewijk B, Nanchen A, Nallet S, Kleijn RJ, Sauer U. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol. 2011;7:12.
Google Scholar
Varela C, Schmidt SA, Borneman AR, Pang CNI, Kromerx JO, Khan A, Song X, Hodson MP, Solomon M, Mayr CM, et al. Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metab Eng. 2018;49:178–91.
Article
CAS
PubMed
Google Scholar
Magalie C, Isabelle S, Anne G, Vincent F, Carole C, Sylvie D. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics. 2012;13:317.
Article
Google Scholar
Taymaznikerel H, De MM, Baart G, Maertens J, Heijnen JJ, Van GW. Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. Metab Eng. 2013;16:115–29.
Article
CAS
Google Scholar
Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: Tc
R and Km
R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995;158:9–14.
Article
CAS
PubMed
Google Scholar
Millard P, Massou S, Wittmann C, Portais J, Létisse F. Sampling of intracellular metabolites for stationary and non-stationary 13C metabolic flux analysis in Escherichia coli. Anal Biochem. 2014;465:38–49.
Article
CAS
PubMed
Google Scholar
Toya Y, Nakahigashi K, Tomita M, Shimizu K. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol BioSyst. 2012;8:2593–604.
Article
CAS
PubMed
Google Scholar
Yao R, Pan K, Peng H, Feng L, Hu H, Zhang X. Engineering and systems-level analysis of Pseudomonas chlororaphis for production of phenazine-1-carboxamide using glycerol as the cost-effective carbon source. Biotechnol Biofuels. 2018;11:130.
Article
PubMed
PubMed Central
Google Scholar
Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem. 2005;336:164–71.
Article
CAS
PubMed
Google Scholar
Weiner M, Tröndle J, Schmideder A, Albermann C, Binder K, Sprenger GA, Weuster-Botz D. Parallelized small-scale production of uniformly 13C-labeled cell extract for quantitative metabolome analysis. Anal Biochem. 2015;478:134–40.
Article
CAS
PubMed
Google Scholar
Young JD. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics. 2014;30:1333–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng. 2007;9:68–86.
Article
CAS
PubMed
Google Scholar
Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng. 2006;8:324–37.
Article
CAS
PubMed
Google Scholar
Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005;12:291–9.
Article
CAS
PubMed
Google Scholar
Nakashima N, Tamura T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 2009;37(15):e103.
Article
PubMed
PubMed Central
Google Scholar
Liu K, Hu H, Wang W, Zhang X. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Microb Cell Fact. 2016;15:131.
Article
PubMed
PubMed Central
Google Scholar