Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–32.
Article
CAS
Google Scholar
Enamala MK, Enamala S, Chavali M, Donepudi J, Yadavalli R, Kolapalli B, Aradhyula TV, Velpuri J, Kuppam C. Production of biofuels from microalgae—a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev. 2018;94:49–68.
Article
CAS
Google Scholar
Brown N, Shilton A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol. 2014;13:321–8.
Article
CAS
Google Scholar
Fu L, Cui X, Li Y, Xu L, Zhang C, Xiong R, Zhou D, Crittenden JC. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chem Eng J. 2017;330:566–72.
Article
CAS
Google Scholar
Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol. 2014;174:24–32.
Article
CAS
Google Scholar
Liang MH, Qv XY, Chen H, Wang Q, Jiang JG. Effects of salt concentrations and nitrogen and phosphorus starvations on neutral lipid contents in the green microalga Dunaliella tertiolecta. J Agric Food Chem. 2017;65:3190–7.
Article
CAS
Google Scholar
Griffiths MJ, van Hille RP, Harrison STL. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol. 2014;98:2345–56.
Article
CAS
Google Scholar
Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81:629–36.
Article
CAS
Google Scholar
Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol. 2016;28:1509–20.
Article
CAS
Google Scholar
Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol. 2014;152:292–8.
Article
CAS
Google Scholar
Shen XF, Chu FF, Lam PKS, Zeng RJ. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 2015;81:294–300.
Article
CAS
Google Scholar
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.
Article
CAS
Google Scholar
Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R. Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol. 2014;98:4805–16.
Article
CAS
Google Scholar
Chu FF, Chu PN, Cai PJ, Li WW, Lam PKS, Zeng RJ. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol. 2013;134:341–6.
Article
CAS
Google Scholar
Shen XF, Liu JJ, Chu FF, Lam PKS, Zeng RJ. Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl Energy. 2015;158:348–54.
Article
CAS
Google Scholar
Chu FF, Chu PN, Shen XF, Lam PKS, Zeng RJ. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol. 2014;152:241–6.
Article
CAS
Google Scholar
Eixler S, Karsten U, Selig U. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia. 2006;45:53–60.
Article
Google Scholar
Li Q, Fu L, Wang Y, Zhou D, Rittmann BE. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresour Technol. 2018;268:266–70.
Article
CAS
Google Scholar
Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol. 2015;184:179–89.
Article
CAS
Google Scholar
Wang Y, Ho SH, Cheng CL, Guo WQ, Nagarajan D, Ren NQ, Lee DJ, Chang JS. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol. 2016;222:485–97.
Article
CAS
Google Scholar
Jayakumar S, Yusoff MM, Ab Rahim MH, Maniam GP, Govindan N. The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sustain Energy Rev. 2017;72:33–47.
Article
CAS
Google Scholar
Suzuki K, Waki M, Yasuda T, Fukumoto Y, Kuroda K, Sakai T, Suzuki N, Suzuki R, Matsuba K. Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater. Bioresour Technol. 2010;101:9399–404.
Article
CAS
Google Scholar
Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7:1–7.
Article
CAS
Google Scholar
Zhou D, Zhang C, Liang F, Liang X, Cui X, Li Q, Crittenden JC. Responses of the microalga Chlorophyta sp. to bacterial quorum sensing molecules (n-acylhomoserine lactones): aromatic protein induced self-aggregation. Environ Sci Technol. 2017;51:3490–8.
Article
CAS
Google Scholar
Kamyab H, Din MFM, Keyvanfar A, Majid MZA, Talaiekhozani A, Shafaghat A, Lee CT, Shiun LJ, Ismail HH. Efficiency of microalgae chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 2015;75:2400–8.
Article
CAS
Google Scholar
Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45:11–36.
Article
CAS
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Phys. 1959;37:911–7.
Article
CAS
Google Scholar
Zhang C, Li Q, Fu L, Zhou D, Crittenden JC. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis. Bioresour Technol. 2018;263:576–82.
Article
CAS
Google Scholar
Frolund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–58.
Article
Google Scholar
Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M. Microalgae-novel highly efficient starch producers. Biotechnol Bioeng. 2011;108:766–76.
Article
CAS
Google Scholar
Li J, Song L. Applicability of the MTT assay for measuring viability of cyanobacteria and algae, specifically for Microcystis aeruginosa (Chroococcales, Cyanobacteria). Phycologia. 2007;46:593–9.
Article
Google Scholar
Chen X, Zhang C, Tan L, Wang J. Toxicity of Co nanoparticles on three species of marine microalgae. Environ Pollut. 2018;236:454–61.
Article
CAS
Google Scholar
Gaertner G, Uzunov B, Ingolic E, Kofler W, Gacheva G, Pilarski P, Zagorchev L, Odjakova M, Stoyneva M. Microscopic investigations (LM, TEM and SEM) and identification of Chlorella isolate R-06/2 from extreme habitat in Bulgaria with a strong biological activity and resistance to environmental stress factors. Biotechnol Biotechnol Equip. 2015;29:536–40.
Article
CAS
Google Scholar
Polonini HC, Brandao HM, Raposo NRB, Brandao MAF, Mouton L, Coute A, Yepremian C, Sivry Y, Brayner R. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology. 2015;24:938–48.
Article
CAS
Google Scholar
Moreno B, Urbina JA, Oldfield E, Bailey BN, Rodrigues CO, Docampo R. 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Evidence for high levels of condensed inorganic phosphates. J Biol Chem. 2000;275:28356–62.
Article
CAS
Google Scholar
Read EK, Ivancic M, Hanson P, Cade-Menun BJ, McMahon KD. Phosphorus speciation in a eutrophic lake by 31P NMR spectroscopy. Water Res. 2014;62:229–40.
Article
CAS
Google Scholar
Harold FM. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966;30:772–94.
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Xue Y, Qiu R, Guo W, Fan L, Wang P. Superoleophilic Ulva prolifera for oil/water separation: a repayment from the green tide. Chem Eng J. 2016;292:147–55.
Article
CAS
Google Scholar
Li X, Hu HY, Gan K, Sun YX. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101:5494–500.
Article
Google Scholar
Zhu S, Wang Y, Xu J, Shang C, Wang Z, Xu J, Yuan Z. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion. Bioresour Technol. 2015;198:165–71.
Article
CAS
Google Scholar
Shen XF, Liu JJ, Chauhan AS, Hu H, Ma LL, Lam PKS, Zeng RJ. Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res. 2016;17:261–7.
Article
Google Scholar
Wu YH, Yu Y, Hu HY. Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously. Bioresour Technol. 2015;192:374–81.
Article
CAS
Google Scholar
Meza B, de-Bashan LE, Hernandez JP, Bashan Y. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res Microbiol. 2015;166:399–407.
Article
CAS
Google Scholar
Yakovlev A, Tsodikov AD, Bass L. A stochastic model of hormesis. Math Biosci. 1993;116:197–219.
Article
Google Scholar
Liu Y, Chen S, Chen X, Zhang J, Gao B. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels. J Hazard Mater. 2015;297:83–91.
Article
CAS
Google Scholar
Brembu T, Muhlroth A, Alipanah L, Bones AM. The effects of phosphorus limitation on carbon metabolism in diatoms. Philos Trans R Soc Lond B. 2017;372:20160406.
Article
Google Scholar
Rozas EE, Freitas JC. Intracellular increase of glutamate in neuoblatoma cells induced by polar substances of Galaxaura marginata (Rhodophyta, Nemaliales). Rev Bras Farmacogn. 2008;18:53–62.
Article
CAS
Google Scholar
Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.
Article
CAS
Google Scholar
Hu X, Lu K, Mu L, Kang J, Zhou Q. Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon. 2014;80:665–76.
Article
CAS
Google Scholar
Gayen RN, Hussain S, Bhar R, Pal AK. Synthesis and characterization of indium phosphide films prepared by co-evaporation technique. Vacuum. 2012;86:1240–7.
Article
CAS
Google Scholar
Kitazaki C, Numano S, Takanezawa A, Nishizawa T, Shirai M, Asayama M. Characterization of lysis of the multicellular cyanobacterium Limnothrix/Pseudanabaena sp. strain ABRG5-3. Biosci Biotechnol Biochem. 2013;77:2339–47.
Article
CAS
Google Scholar
McLennan AG. Dinucleoside polyphosphates-friend or foe? Pharmacol Ther. 2000;87:73–89.
Article
CAS
Google Scholar
Boonaert CJ, Rouxhet PG. Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol. 2000;66:2548–54.
Article
CAS
Google Scholar
Rodrigues PC, Muraro M, Garcia CM, Souza GP, Abbate M, Schreiner WH, Gomes MAB. Polyaniline/lignin blends: thermal analysis and XPS. Eur Polym J. 2001;37:2217–23.
Article
CAS
Google Scholar
Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP. Crystal structure of metarhodopsin II. Nature. 2011;471:651–5.
Article
CAS
Google Scholar
Law CJ, Maloney PC, Wang DN. Ins and outs of major facilitator superfamily, antiporters. Annu Rev Microbiol. 2008;62:289–305.
Article
CAS
Google Scholar
Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157:447–58.
Article
CAS
Google Scholar