Jiang F, Li T, Li YJ, Zhang Y, Gong A, Dai JQ, Hitz E, Luo W, Hu LB. Wood-based nanotechnologies toward sustainability. Adv Mater. 2018;30:1703453.
Article
Google Scholar
Mika LT, Csefalvay E, Nemeth A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev. 2018;118:505–613.
Article
CAS
Google Scholar
Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.
Article
CAS
Google Scholar
Isogai A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci. 2013;59:449–59.
Article
CAS
Google Scholar
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed. 2011;50:5438–66.
Article
CAS
Google Scholar
Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90:735–64.
Article
CAS
Google Scholar
Moreau C, Villares A, Capron I, Cathala B. Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials. Ind Crops Prod. 2016;93:96–107.
Article
CAS
Google Scholar
Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod. 2016;93:2–25.
Article
CAS
Google Scholar
Rånby BG. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc. 1951;11:158–64.
Article
Google Scholar
Rånby BG. Physico-chemical investigations on animal cellulose (Tunicin). Arkiv Kemi. 1952;4:241–8.
Google Scholar
Turbak A, Snyder F, Sandberg K. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci. 1983;37:815–27.
CAS
Google Scholar
Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci. 1983;37:797–813.
CAS
Google Scholar
Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–26.
Article
Google Scholar
Capron I, Rojas OJ, Bordes R. Behavior of nanocelluloses at interfaces. Curr Opin Colloid Interface Sci. 2017;29:83–95.
Article
CAS
Google Scholar
Kalashnikova I, Bizot H, Cathala B, Capron I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir. 2011;27:7471–9.
Article
CAS
Google Scholar
Olivier C, Moreau C, Bertoncini P, Bizot H, Chauvet O, Cathala B. Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir. 2012;28:12463–71.
Article
CAS
Google Scholar
Mougel JB, Adda C, Bertoncini P, Capron I, Cathala B, Chauvet O. Highly efficient and predictable noncovalent dispersion of single-walled and multi-walled carbon nanotubes by cellulose nanocrystals. J Phys Chem C. 2016;120:22694–701.
Article
CAS
Google Scholar
Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687–91.
Article
CAS
Google Scholar
Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–91.
Article
CAS
Google Scholar
Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8:1934–41.
Article
CAS
Google Scholar
Wagberg L, Decher G, Norgren M, Lindstroem T, Ankerfors M, Axnaes K. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir. 2008;24:784–95.
Article
Google Scholar
Nie SX, Zhang K, Lin XJ, Zhang CY, Yan DP, Liang HM, Wang SF. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym. 2018;181:1136–42.
Article
CAS
Google Scholar
Long LF, Tian D, Hu JG, Wang F, Saddler J. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour Technol. 2017;243:898–904.
Article
CAS
Google Scholar
Lecourt M, Sigoillot JC, Petit-Conil M. Cellulase-assisted refining of chemical pulps: impact of enzymatic charge and refining intensity on energy consumption and pulp quality. Process Biochem. 2010;45:1274–8.
Article
CAS
Google Scholar
Lecourt M, Meyer V, Sigoillot JC, Petit-Conil M. Energy reduction of refining by cellulases. Holzforschung. 2010;64:441–6.
Article
CAS
Google Scholar
Tandrup T, Frandsen KEH, Johansen KS, Berrin J-G, Lo Leggio L. Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans. 2018;46:1431–47.
Article
CAS
Google Scholar
Johansen KS. Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem Soc Trans. 2016;44:143–9.
Article
CAS
Google Scholar
Valenzuela SV, Valls C, Schink V, Sánchez D, Roncero MB, Diaz P, Martínez J, Pastor FIJ. Differential activity of lytic polysaccharide monooxygenases on celluloses of different crystallinity. Effectiveness in the sustainable production of cellulose nanofibrils. Carbohydr Polym. 2019;207:59–67.
Article
CAS
Google Scholar
Hu J, Tian D, Renneckar S, Saddler JN. Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep. 2018;8:3195.
Article
Google Scholar
Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin JG, Cathala B. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep. 2017;7:40262.
Article
CAS
Google Scholar
Ladeveze S, Haon M, Villares A, Cathala B, Grisel S, Herpoel-Gimbert I, Henrissat B, Berrin JG. The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. Biotechnol Biofuels. 2017;10:215.
Article
Google Scholar
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, et al. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels. 2015;8:90.
Article
Google Scholar
Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett. 2011;6:417.
Article
Google Scholar
Siqueira G, Tapin-Lingua S, Bras J, da Perez DS, Dufresne A. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose. 2010;17:1147–58.
Article
CAS
Google Scholar
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.
Article
CAS
Google Scholar
Hoebler C, Barry JL, David A, Delortlaval J. Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. J Agric Food Chem. 1989;37:360–7.
Article
CAS
Google Scholar
Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, et al. Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose. 2015;22:1591–613.
Article
CAS
Google Scholar
Hasani M, Henniges U, Idstrom A, Nordstierna L, Westman G, Rosenau T, Potthast A. Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohydr Polym. 2013;98:1565–72.
Article
CAS
Google Scholar
Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018;14:306.
Article
CAS
Google Scholar
Zuckerstätter G, Schild G, Wollboldt P, Röder T, Weber HK, Sixta H. The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzing Ber. 2009;87:38–46.
Google Scholar
Larsson PT, Wickholm K, Iversen T. A CP/MAS C-13 NMR investigation of molecular ordering in celluloses. Carbohydr Res. 1997;302:19–25.
Article
CAS
Google Scholar
Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A. Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose. 2003;10:307–16.
Article
Google Scholar
Peciulyte A, Karlstoem K, Larsson PT, Olsson L. Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels. 2015;8:56.
Article
Google Scholar
Malm E, Bulone V, Wickholm K, Larsson PT, Iversen T. The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr Res. 2010;345:97–100.
Article
CAS
Google Scholar
Wagberg L, Winter L, Odberg L, Lindstrom T. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf. 1987;27:163–73.
Article
Google Scholar
Cathala B, Villares A, Moreau C, Berrin JG. Procedure for the fabrication of nanocellulose from a cellulosic substrate. French patent FR 2015/1555049. 2015.
Besbes I, Vilar MR, Boufi S. Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym. 2011;86:1198–206.
Article
CAS
Google Scholar
Chaker A, Mutje P, Vilaseca F, Boufi S. Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos. 2013;34:1999–2007.
Article
CAS
Google Scholar
Simmons TJ, Mortimer JC, Bernardinelli OD, Poppler AC, Brown SP, Deazevedo ER, Dupree R, Dupree P. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun. 2016;7:13902.
Article
CAS
Google Scholar
Wang WX, Sabo RC, Mozuch MD, Kersten P, Zhu JY, Jin YC. Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ. 2015;23:551–8.
Article
CAS
Google Scholar
Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG. Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol. 2011;77:237–46.
Article
CAS
Google Scholar
Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrom YH, Eijsink VGH. Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A. 2013;1271:144–52.
Article
CAS
Google Scholar
Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum. 2007;78:013705.
Article
CAS
Google Scholar
Blakeney AB, Harris PJ, Henry RJ, Stone BA. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res. 1983;113:291–9.
Article
CAS
Google Scholar