Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–9.
Article
CAS
PubMed
Google Scholar
Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007;315(5813):801–4.
Article
CAS
PubMed
Google Scholar
Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Edit. 2008;47(48):9200–11.
Article
CAS
Google Scholar
Sklavounos E, Iakovlev M, van Heiningen A. Study on conditioning of SO2–ethanol–water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind Eng Chem Res. 2013;52(11):4351–9.
Article
CAS
Google Scholar
Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev. 1986;50(4):484–524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hüsemann MH, Papoutsakis ET. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioeng. 1988;32(7):843–52.
Article
PubMed
Google Scholar
Bryant DL, Blaschek HP. Buffering as a means for increasing growth and butanol production by Clostridium acetobutylicum. J Ind Microbiol. 1988;3(1):49–55.
Article
CAS
Google Scholar
Maddox I, Steiner E, Hirsch S, Wessner S, Gutierrez N, Gapes J, Schuster K. The cause of “acid crash” and” acidogenic fermentations” during the batch acetone–butanol–ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol. 2000;2(1):95–100.
CAS
PubMed
Google Scholar
Ezeji T, Qureshi N, Blaschek H. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol. 2004;63(6):653–8.
Article
CAS
PubMed
Google Scholar
Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y. Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol. 2011;77(5):1674–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J. Incubation at 25 C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol. 2015;192:296–303.
Article
PubMed
CAS
Google Scholar
Yang X, Tu M, Xie R, Adhikari S, Tong Z. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express. 2013;3(1):3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boonsombuti A, Komolpis K, Luengnaruemitchai A, Wongkasemjit S. Enhancement of ABE fermentation through regulation of ammonium acetate and d-xylose uptake from acid-pretreated corncobs. Ann Microbiol. 2014;64(2):431–9.
Article
CAS
Google Scholar
Sasaki C, Kushiki Y, Asada C, Nakamura Y. Acetone–butanol–ethanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using acorns and wood chips of Quercus acutissima as a carbon source. Ind Crops Prod. 2014;62:286–92.
Article
CAS
Google Scholar
Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—batch fermentation. Biomass Bioenergy. 2008;32(2):168–75.
Article
CAS
Google Scholar
Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC. Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels. 2016;9(1):113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ibrahim MF, Abd-Aziz S, Yusoff MEM, Phang LY, Hassan MA. Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy. 2015;77:447–55.
Article
CAS
Google Scholar
Linggang S, Phang LY, Wasoh H, Abd-Aziz S. Acetone–butanol–ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res. 2013;6(1):321–8.
Article
CAS
Google Scholar
Linggang S, Phang L, Wasoh M, Abd-Aziz S. Sago pith residue as an alternative cheap substrate for fermentable sugars production. Appl Biochem Biotechnol. 2012;167(1):122–31.
Article
CAS
PubMed
Google Scholar
dos Santos AC, Ximenes E, Kim Y, Ladisch MR. Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol. 2019;37(5):518–31.
Article
PubMed
CAS
Google Scholar
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lai C, Tu M, Li M, Yu S. Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood. Bioresour Technol. 2014;156:92–9.
Article
CAS
PubMed
Google Scholar
Li M, Si S, Hao B, Zha Y, Wan C, Hong S, Kang Y, Jia J, Zhang J, Li M. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresour Technol. 2014;169:447–54.
Article
CAS
PubMed
Google Scholar
Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc. 2015;137(23):7456–67.
Article
CAS
PubMed
Google Scholar
Yao L, Chen C, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ, Dong C, Yang H. Insights of ethanol organosolv pretreatment on lignin properties of Broussonetia papyrifera. ACS Sustain Chem Eng. 2018;6(11):14767–73.
Article
CAS
Google Scholar
Xu Y, Li K, Zhang M. Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping. Colloids Surf A. 2007;301(1–3):255–63.
Article
CAS
Google Scholar
Huang Y, Sun S, Huang C, Yong Q, Elder T, Tu M. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity. Biotechnol Biofuels. 2017;10(1):162.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tu M, Pan X, Saddler JN. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem. 2009;57(17):7771–8.
Article
CAS
PubMed
Google Scholar
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air–liquid interface on cellulose conversions at low enzyme loadings. Biotechnol Biofuels. 2019;12(1):1–15.
Article
Google Scholar
Georgieva TI, Hou X, Hilstrøm T, Ahring BK. Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading. Biotechnology for fuels and chemicals. Berlin: Springer; 2007. p. 553–62.
Chapter
Google Scholar
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Golden: National Renewable Energy Lab. (NREL); 2011.
Google Scholar
Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A. NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Golden: National Renewable Energy Lab. (NREL); 2014.
Book
Google Scholar
Arantes V, Saddler JN. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels. 2011;4(1):3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyriacou A, Neufeld RJ, MacKenzie CR. Effect of physical parameters on the adsorption characteristics of fractionated Trichoderma reesei cellulase components. Enzyme Microb Technol. 1988;10(11):675–81.
Article
CAS
Google Scholar
Bernardez TD, Lyford K, Hogsett DA, Lynd LR. Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, Avicel, and lignin. Biotechnol Bioeng. 1993;42(7):899–907.
Article
CAS
PubMed
Google Scholar
Lai C, Tu M, Yong Q, Yu S. Synergistic effects of pH and organosolv lignin addition on the enzymatic hydrolysis of organosolv-pretreated loblolly pine. RSC Adv. 2018;8(25):13835–41.
Article
CAS
Google Scholar
Mandels M, Hontz L, Nystrom J. Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng. 1974;16(11):1471–93.
Article
CAS
Google Scholar
Min BC, Ramarao BV. Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation. Bioprocess Biosyst Eng. 2017;40(6):799–806.
Article
CAS
PubMed
Google Scholar
Min BC, Bhayani B, Jampana V, Ramarao B. Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. Bioresour Bioprocess. 2015;2(1):40.
Article
Google Scholar
Lai C, Tu M, Shi Z, Zheng K, Olmos LG, Yu S. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresour Technol. 2014;163:320–7.
Article
CAS
PubMed
Google Scholar
Lu CC, Yu L, Varghese S, Yu MR, Yang ST. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Bioresour Technol. 2017;243:1000–8.
Article
CAS
PubMed
Google Scholar
Ibrahim MF, Linggang S, Jenol MA, Yee PL, Abd-Aziz S. Effect of buffering system on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum ATCC 824 using pretreated oil palm empty fruit bunch. BioResources. 2015;10(3):3890–907.
Article
CAS
Google Scholar
Li J, Shi S, Tu M, Via B, Sun FF, Adhikari S. Detoxification of organosolv-pretreated pine prehydrolysates with anion resin and cysteine for butanol fermentation. Appl Biochem Biotechnol. 2018;186(3):662–80.
Article
CAS
PubMed
Google Scholar
Xiao Z, Zhang X, Gregg DJ, Saddler JN. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. In: Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals held May 4–7, 2003, in Breckenridge, CO, 2004. Berlin: Springer. p. 1115–26.
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of extractives in biomass. Laboratory Analytical Procedure (LAP). 2005. p. 1617.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced. 2008;1617:1–16.
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory; 2006.
Google Scholar