Graham-Rowe D. Agriculture: beyond food versus fuel. Nature. 2011;474:S6–8.
Article
CAS
PubMed
Google Scholar
Nonhebel S. Energy yields in intensive and extensive biomass production systems. Biomass Bioenergy. 2002;22:159–67.
Article
Google Scholar
Heaton EA, Clifton-Brown J, Voigt TB, Jones MB, Long SP. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Change. 2004;9:433–51.
Article
Google Scholar
Jones MB, Finnan J, Hodkinson TR. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy. 2015;7:375–85.
Article
Google Scholar
Stewart JR, Toma Y, Fernández FG, Nishiwaki A, Yamada T, Bollero G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy. 2009;1(2):126–53.
Article
Google Scholar
Clifton-Brown JC, Stampfl PF, Jones MB. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Change Biol. 2004;10(4):509–18.
Article
Google Scholar
Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008;54:559–68.
Article
CAS
PubMed
Google Scholar
Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science. 2010;329:790–2.
Article
CAS
PubMed
Google Scholar
Glowacka K. A review of the genetic study of the energy crop Miscanthus. Bio Bio. 2011;35:2445–54.
Article
CAS
Google Scholar
Caslin B, Finnan J. Miscanthus energy crop. Energy Fact Sheet. 2016. 9. www.teagasc.ie
Jorgensen U. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenerg. 1997;12:155–69.
Article
CAS
Google Scholar
Hodkinson TR, Chase MW, Renvoize SA. Genetic resources of Miscanthus. Aspec of Appl Biol. 2001;65:239–48.
Google Scholar
Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, et al. Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol. 2010;11:R12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clifton-Brown J, Chiang Y, Hodkinson TR. Miscanthus: genetic resources and breeding potential to enhance bioenergy production aspect. Appl Biol. 2008;65:239–48.
Google Scholar
Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP. Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol. 2008;19:202–9.
Article
CAS
PubMed
Google Scholar
Beale CV, Long SP. Can perennial C4 grasses attain high efficiencies of radiant energy-conversion in cool climates. Plant Cell Environ. 1995;18:641–50.
Article
Google Scholar
Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T. Miscanthus x giganteus productivity: the effects of management in different environments. GCB Bioenergy. 2012;4:253–65.
Article
Google Scholar
Clifton-Brown J, Lewandowski I. Overwintering problems with newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol. 2000;148:287–94.
Article
Google Scholar
Weng JH. Photosynthesis of different ecotypes of Miscanthus spp. as affected by water stress. Photosynthetica. 1993;29:43–8.
Google Scholar
Malinowska M, Donnison IS, Robson PRH. Phenomics analysis of drought responses in Miscanthus collected from different geographical locations. GCB Bioenergy. 2017;9:78–91.
Article
CAS
Google Scholar
Ings J, La M, Bosch M. Physiological and growth responses of water deficit in the bioenergy crop Miscanthus x giganteus. Front Plant Sci. 2013;4:468.
Article
PubMed
PubMed Central
Google Scholar
Nie G, Huang L, Xiao Ma X, Ji Z, Zhang Y, Lu Tang L, Zhang X. Enriching genomic resources and transcriptional profile analysis of Miscanthus sinensis under drought stress based on RNA sequencing. Int J Genomics. 2017. https://doi.org/10.1155/2017/9184731.
Article
PubMed
PubMed Central
Google Scholar
Song Z, Xu Q, Lin C, Tao C, Zhu C, Xing S, et al. Transcriptomic characterization of candidate genes responsive to salt tolerance of Miscanthus energy crops. GCB Bioenergy. 2017;9:1222–37.
Article
CAS
Google Scholar
Wang Q, Kanga L, Lin C, Song Z, Tao C, Liu W, et al. Transcriptomic evaluation of Miscanthus photosynthetic traits to salinity stress. Biomass Bioenerg. 2019;125:123–30.
Article
CAS
Google Scholar
Whitlow TH, Bassuk NL, Ranney TG, Reichert DL. An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol. 1992;98:198–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leopold AC, Musgrave ME, Williams KM. Solute leakage resulting from leaf desiccation. Plant Physiol. 1981;68:1222–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter GM, Riche AB, Dailey AG, Gezan SA, Powlson DS. Is UK biofuel supply from Miscanthus water-limited? Soil Use Manag. 2008;24:235–45.
Article
Google Scholar
Yan J, Chen W, Luo F, Ma H, Meng A, Li X, et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy. 2012;4:49–60.
Article
Google Scholar
Slatyer RO. Studies of the water relations of crop plants grown under natural rainfall in northern Australia. Aus J Agri Res. 1955;61:365–77.
Article
Google Scholar
Varoquauxa N, Colec B, Gaod C, Pierrozd G, Bakerd CR, Pateld D, et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. PNAS. 2019;116(52):27124–32.
Article
CAS
Google Scholar
Santelia D, Trost P, Sparla F. New insights into redox control of starch degradation. Curr Opin Plant Biol. 2015;25:1–9.
Article
CAS
PubMed
Google Scholar
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, et al. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell. 2016;28(8):1860–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A, et al. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot. 2016;67(6):1819–26.
Article
CAS
PubMed
Google Scholar
Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19(9):998–1011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol. 2001;3:7.
Article
Google Scholar
Maurel C, Verdoucq L, Luu DT, Santoni V. Plant Aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59(1):595–624.
Article
CAS
PubMed
Google Scholar
Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, et al. Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol. 2005;59:469–84.
Article
CAS
PubMed
Google Scholar
Fetter K, Van Wilder V, Moshelion M, Chaumont F. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell. 2004;16:215–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fracasso A, Trindade LM, Amaducci S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016;16(115):1–18.
Google Scholar
Chaichi M, Sanjarian F, Razavi K, Gonzalez-Hernandez JL. Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. PLoS ONE. 2019;14(3):e0212671.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marondedze C, Thomas L, Gehring C, Lilley KS. Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC Plant Biol. 2019;19(139):2–11.
Google Scholar
Sanchez-Rodriguez E, Moreno DA, Ferreres F, Rubio-WilhelmiMdel M, Ruiz JM. Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry. 2011;72:723–9.
Article
CAS
PubMed
Google Scholar
Nichols SN, Hofmann RW, Williams WM. Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Bot. 2015;119:40–7.
Article
CAS
Google Scholar
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014;77:367–79.
Article
CAS
PubMed
Google Scholar
Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC. Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (hawthorn) subjected to drought and cold stress. J Agric Food Chem. 2003;51:3973–6.
Article
CAS
PubMed
Google Scholar
SAS Institute Inc. SAS/STAT® 13.2 user’s guide. Cary: SAS Institute Inc; 2014.
Google Scholar
Andrews, S. FastQC. A quality control tool for high throughput sequence data; 2018. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 17 July 2020.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;170:2114–20.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
De Vega JJ, Teshome A, Klaas M, Grant J, Finnan J, Barth S. R code used in “Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species” (Version 1). 2020. Zenodo. https://doi.org/10.5281/zenodo.3950495.
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar
Gehlenborg N. UpSetR: A more scalable alternative to Venn and Euler diagrams for visualizing intersecting sets. 2019. R package version 1.4.0. https://CRAN.R-project.org/package=UpSetR
Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for gene ontology. 2019. R package version 2.38.1.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:1178–86.
Article
CAS
Google Scholar
Krishnakumar V, Contrino S, Cheng C, Belyaeva I, Ferlanti ES, Miller JR, et al. A warehouse for Arabidopsis data integration and discovery. Plant Cell Physio. 2016;58:1.
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar