Skip to main content
Fig. 4 | Biotechnology for Biofuels

Fig. 4

From: Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172

Fig. 4

Combined expression and upregulation values of CAZyme-encoding genes during cultivation on four different substrates. Putative CAZyme-encoding genes involved in biomass degradation were analyzed for their expression levels (TPM, transcripts per million) from three biological replicates, as well as their differential expression (log2FC). The heatmap shows a combination of top forty most highly upregulated CAZyme-encoding genes on three substrates Avicel, rice straw (RS), beechwood xylan (BX) when compared to glucose (Glc). Shading ranges from low expression (light blue) to high expression (magenta). Log2 fold-change (log2FC) shows gene expression during cultivation on Avicel, RS, and BX compared to cultivation on glucose. Shading of upregulated genes (i.e., gene transcripts more abundant on Avicel, RS, and/or BX than on glucose) ranges from light yellow (low upregulation) to dark green (high upregulation). Downregulated genes or genes for which no differential expression was detected or where upregulation was not significant are indicated by blank cells. Only significantly upregulated genes are shown (p ≤ 0.05). All numbers were rounded to the nearest integer. The putative activities of the gene products are based on BLASTp predictions. CAZy domains were analyzed with dbCAN2. The presence of putative signal peptides (SP), predicted by SignalP 4.0, is indicated by a small s. Putative substrates of the CAZymes are: C, cellulose; Ch, chitin; GM, glucomannan; L, lignin; P, pectin; S, starch; X, xylan; XG, xyloglucan

Back to article page