Hassan SS, Williams GA, Jaiswal AK. Lignocellulosic biorefineries in Europe: Current state and prospects. Trends Biotechnol. 2019;37(3):231–4.
Article
CAS
PubMed
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady J, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.
Article
CAS
PubMed
Google Scholar
Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30(6):1458–80.
Article
PubMed
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012;109(4):1083–7.
Article
CAS
PubMed
Google Scholar
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4(1):117–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, et al. Fueling the future with fungal genomics. Mycology. 2011;2(3):192–209.
Google Scholar
Mäkelä MR, Donofrio N, De Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol. 2014;72:2–9.
Article
PubMed
Google Scholar
Patel AK, Singhania RR, Sim SJ, Pandey A. Thermostable cellulases: current status and perspectives. Bioresour Technol. 2019;279:385–92.
Article
CAS
PubMed
Google Scholar
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol. 2019;280:478–88.
Article
CAS
PubMed
Google Scholar
Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M. Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L, editor. Biofuels. Berlin: Springer; 2007. p. 121–45.
Chapter
Google Scholar
Krska D, Larsbrink J. Investigation of a thermostable multi-domain xylanase-glucuronoyl esterase enzyme from Caldicellulosiruptor kristjanssonii incorporating multiple carbohydrate-binding modules. Biotechnol Biofuels. 2020;13(1):1–13.
Article
CAS
Google Scholar
Wang XW, Bai FY, Bensch K, Meijer M, Sun BD, Han YF, et al. Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Stud Mycol. 2019;93:155–252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margaritis A, Merchant RFJ. Thermostable cellulases from thermophilic microorganisms. Crit Rev Biotechnol. 1986;4(3):327–67.
Article
CAS
Google Scholar
Durand H. Comparative study of cellulases and hemicellulases from four fungi : mesophiles Trichoderma reesei and Penicillium sp. and thermophiles Thielavia terrestris and Sporotrichum cellophilum. Enzyme Microb Technol. 1984;6:175–80.
Article
CAS
Google Scholar
Yang S, Xu H, Yan Q, Liu Y, Zhou P, Jiang Z. A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters). J Ind Microbiol Biotechnol. 2013;40(2):217–26.
Article
CAS
PubMed
Google Scholar
García-Huante Y, Cayetano-Cruz M, Santiago-Hernández A, Cano-Ramírez C, Marsch-Moreno R, Campos JE, et al. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles. 2017;21(1):175–86.
Article
PubMed
CAS
Google Scholar
Thanh VN, Thuy NT, Huong HTT, Hien DD, Hang DTM, Anh DTK, et al. Surveying of acid-tolerant thermophilic lignocellulolytic fungi in Vietnam reveals surprisingly high genetic diversity. Sci Rep. 2019;9(1):1–12.
Google Scholar
Benoit JB, Yoder JA, Zettler LW, Hobbs HH. Mycoflora of a trogloxenic cave cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from two small caves in Northeastern Kentucky. Ann Entomol Soc Am. 2004;97(5):989–93.
Article
Google Scholar
Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. In: Olsson L, editor. Biofuels. Berlin: Springer; 2007. p. 95–120.
Chapter
Google Scholar
Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry. 2010;49(15):3305–16.
Article
CAS
PubMed
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA. 2011;108(37):15079–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0027807.
Article
PubMed
PubMed Central
Google Scholar
Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011;6(12):1399–406.
Article
CAS
PubMed
Google Scholar
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):1–14.
Article
CAS
Google Scholar
Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol. 2011;29(10):922–7.
Article
CAS
PubMed
Google Scholar
de Vries RP, Benoit I, Doehlemann G, Kobayashi T, Magnuson JK, Panisko EA, et al. Post-genomic approaches to understanding interactions between fungi and their environment. IMA Fungus. 2011;2(1):81–6.
Article
PubMed
PubMed Central
Google Scholar
Gilbert M, Yaguchi M, Watson DC, Wong KKY, Breuil C, Saddler JN. A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus. Appl Microbiol Biotechnol. 1993;40(4):508–14.
Article
CAS
PubMed
Google Scholar
Langston JA, Brown K, Xu F, Borch K, Garner A, Sweeney MD. Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochim Biophys Acta. 2012;1824(6):802–12.
Article
CAS
PubMed
Google Scholar
Xu H, Yan Q, Duan X, Yang S, Jiang Z. Characterization of an acidic cold-adapted cutinase from Thielavia terrestris and its application in flavor ester synthesis. Food Chem. 2015;188:439–45.
Article
CAS
PubMed
Google Scholar
Woon JS, Mackeen MM, Binsudin AH, Mahadi NM, Illias RM, Murad AM, et al. Production of an oligosaccharide-specific cellobiohydrolase from the thermophilic fungus Thielavia terrestris. Biotechnol Lett. 2016;38(5):825–32.
Article
CAS
PubMed
Google Scholar
Meng Z, Yang QZ, Wang zhen J, Hou YH. Cloning, characterization, and functional expression of a thermostable type B feruloyl esterase from thermophilic Thielavia terrestris. Appl Biochem Biotechnol. 2019;189(4):1304–17.
Article
CAS
PubMed
Google Scholar
Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, Gutiérrez-Antón M, Aguilar-Osorio G, Hidalgo-Lara ME. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron J Biotechnol. 2019;41:60–71.
Article
CAS
Google Scholar
Shirke AN, Basore D, Holton S, Su A, Baugh E, Butterfoss GL, et al. Influence of surface charge, binding site residues and glycosylation on Thielavia terrestris cutinase biochemical characteristics. Appl Microbiol Biotechnol. 2016;100(10):4435–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee S, Archana A, Satyanarayana T. Xylanolytic activity and xylose utilization by thermophilic molds. Folia Microbiol. 1995;40(3):279–82.
Article
CAS
Google Scholar
Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 2011;21(6):885–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, et al. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet. 2012. https://doi.org/10.1371/journal.pgen.1002869.
Article
PubMed
PubMed Central
Google Scholar
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18:1–45.
Article
CAS
Google Scholar
Money NP. Fungal diversity. In: Watkinson SC, Boddy L, Money NP, editors. The Fungi. Cambridge: Academic Press; 2016. p. 1–36.
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
CAS
PubMed
Google Scholar
Mohanta TK, Bae H. The diversity of fungal genome. Biol Proced Online. 2015;17(1):1–9.
Article
CAS
Google Scholar
Stajich JE. Fungal genomes and insights into the evolution of the kingdom. Microbiol Spectr. 2017;5(4):619–33.
Google Scholar
Kjærbølling I, Vesth T, Frisvad JC, Nybo JL, Theobald S, Kildgaard S, et al. A comparative genomics study of 23 Aspergillus species from section Flavi. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-14051-y.
Article
PubMed
PubMed Central
Google Scholar
Hüttner S, Nguyen TT, Granchi Z, Chin-A-Woeng T, Ahrén D, Larsbrink J, et al. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea. Biotechnol Biofuels. 2017;10(1):265.
Article
PubMed
PubMed Central
CAS
Google Scholar
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, et al. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 2008. https://doi.org/10.1186/gb-2008-9-5-r77.
Article
PubMed
PubMed Central
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette R, Henrissat B, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–9.
Article
CAS
PubMed
Google Scholar
Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957–63.
Article
CAS
PubMed
Google Scholar
Hüttner S, Granchi Z, Nguyen TT, van Pelt S, Larsbrink J, Thanh VN, et al. Genome sequence of Rhizomucor pusillus FCH 57, a thermophilic zygomycete involved in plant biomass degradation harbouring putative GH9 endoglucanases. Biotechnol Reports. 2018;20:e00279.
Article
Google Scholar
Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009. https://doi.org/10.1371/journal.pgen.1000549.
Article
PubMed
PubMed Central
Google Scholar
Van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C, et al. Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol. 2013. https://doi.org/10.1186/1471-2148-13-7.
Article
PubMed
PubMed Central
Google Scholar
Salar RK. Origin of thermophily in fungi. In: Salar RK, editor. Thermophilic Fungi. Boca Raton: CRC Press; 2018. p. 29–53.
Chapter
Google Scholar
Chang YC, Tsai HF, Karos M, Kwon-Chung KJ. THTA, a thermotolerance gene of Aspergillus fumigatus. Fungal Genet Biol. 2004;41(9):888–96.
Article
CAS
PubMed
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):490–5.
Article
CAS
Google Scholar
Filiatrault-Chastel C, Navarro D, Haon M, Grisel S, Herpoël-Gimbert I, Chevret D, et al. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels. 2019;12(1):55.
Article
PubMed
PubMed Central
Google Scholar
Benocci T, Victoria M, Pontes A, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol Biofuels. 2017;10(152):1–25.
Google Scholar
Yokoyama S, Matsmura Y. The Asian Biomass Handbook. The Japan Institute of Energy. (2008). p 338
van Gool MP. Targeted discovery and functional characterisation of complex-xylan degrading enzymes. [Wageningen]: Wageningen University; 2012.
Várnai A, Siika-aho M, Viikari L. Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol. 2010;46(3–4):185–93.
Article
CAS
Google Scholar
Mazurkewich S, Poulsen JCN, Lo LL, Larsbrink J. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. J Biol Chem. 2019;294(52):19978–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Vries RP, Mäkelä MR. Genomic and postgenomic diversity of fungal plant biomass degradation approaches. Trends Microbiol. 2020;28(6):487–99.
Article
PubMed
CAS
Google Scholar
Klaubauf S, Narang HM, Post H, Zhou M, Brunner K, Mach-Aigner AR, et al. Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi. Fungal Genet Biol. 2014;72:73–81.
Article
CAS
PubMed
Google Scholar
Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell. 2006;5(12):2128–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03142-x.
Article
PubMed
PubMed Central
Google Scholar
Couturier M, Ladevèze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018;14(3):306–10.
Article
CAS
PubMed
Google Scholar
Hüttner S, Várnai A, Petrovic D, Bach CX, Kim Anh DT, Thanh VN, et al. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization. Appl Environ Microbiol. 2019;85(23):1–13.
Article
Google Scholar
Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SWA, Koetsier MJ, et al. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels. 2015;8(1):4–15.
Article
CAS
Google Scholar
Petrović DM, Várnai A, Dimarogona M, Mathiesen G, Sandgren M, Westereng B, et al. Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. J Biol Chem. 2019;294(41):15068–81.
Article
PubMed
PubMed Central
Google Scholar
Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352(6289):1098–101.
Article
CAS
PubMed
Google Scholar
Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 2015;6(1):7542.
Article
PubMed
Google Scholar
Courtade G, Wimmer R, Røhr ÅK, Preims M, Felice AKG, Dimarogona M, et al. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci USA. 2016;113(21):5922–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loose JSM, Forsberg Z, Kracher D, Scheiblbrandner S, Ludwig R, Eijsink VGH, et al. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci. 2016;25(12):2175–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haddad Momeni M, Fredslund F, Bissaro B, Raji O, Vuong TV, Meier S, et al. Discovery of fungal oligosaccharide-oxidising flavo-enzymes with previously unknown substrates, redox-activity profiles and interplay with LPMOs. Nat Commun. 2021;12(1):2132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boddy L. Interactions between fungi and other microbes. In: Watkinson SC, Boddy L, Money NP, editors. The Fungi. Boston: Academic press; 2016.
Google Scholar
Kögl F, Fries N. Über den Einfluß von Biotin, Aneurin und Meso-Inosit auf das Wachstum verschiedener Pilzarten. 26. Mitteilung über pflanzliche Wachsturnsstoffe. Hoppe Seylers Z Physiol Chem. 1937;249(2–4):93–110.
Article
Google Scholar
Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb Protoc. 2006. https://doi.org/10.1101/pdb.prot4455.
Article
Google Scholar
Charif D, Lobry JR. SeqinR 1.0-2: A contributed package to the R Project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural Approaches to Sequence Evolution. Berlin: Springer; 2007. p. 207–32.
Chapter
Google Scholar
Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: Efficient manipulation of biological strings. 2020
Sun Y. sscu: Strength of Selected Codon Usage. 2020