Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels. 2021;14:102.
Article
Google Scholar
Huang K, Peng X, Kong L, Wu W, Chen Y, Maravelias CT. Greenhouse gas emission mitigation potential of chemicals produced from biomass. ACS Sustain Chem Eng. 2021;9:14480–7.
Article
Google Scholar
Amore A, Ciesielski PN, Lin C-Y, Salvachúa D, Sànchez i Nogué V. Development of lignocellulosic biorefinery technologies: recent advances and current challenges. Aust J Chem. 2016;69:1201.
Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6:108–28.
Article
CAS
Google Scholar
Loqué D, Scheller HV, Pauly M. Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol. 2015;25:151–61.
Article
Google Scholar
Baral NR, Sundstrom ER, Das L, Gladden JM, Eudes A, Mortimer J, et al. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain Chem Eng. 2019;7:9062–79.
Article
CAS
Google Scholar
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.
Article
CAS
Google Scholar
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4:45.
Article
Google Scholar
Yoo CG, Dumitrache A, Muchero W, Natzke J, Akinosho H, Li M, et al. Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain Chem Eng. 2017;6:2162–8.
Article
Google Scholar
Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. 2019;7:874.
Article
CAS
Google Scholar
Liu C-J, Eudes A. Lignin synthesis and bioengineering approaches toward lignin modification. Adv Bot Res. 2022;104:41–96.
Article
Google Scholar
Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD. Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol. 2016;37:190–200.
Article
CAS
Google Scholar
Eudes A, Sathitsuksanoh N, Baidoo EEK, George A, Liang Y, Yang F, et al. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J. 2015;13:1241–50.
Article
CAS
Google Scholar
Hao Z, Yogiswara S, Wei T, Benites VT, Sinha A, Wang G, et al. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). BMC Plant Biol. 2021;21:56.
Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D et al. A new approach to zip-lignin; 3,4-Dihydroxybenzoate is compatible with lignification. New Phytol. 2022;235:234–246.
Article
CAS
Google Scholar
Sannigrahi P, Ragauskas AJ, Tuskan GA. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Bioref. 2010;4:209–26.
Article
CAS
Google Scholar
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, et al. Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA. 2011;108:6300–5.
Article
CAS
Google Scholar
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol. 2021;19:701–15.
Article
CAS
Google Scholar
Mhatre A, Shinde S, Jha AK, Rodriguez A, Wardak Z, Jansen A, et al. Corynebacterium glutamicum as an efficient omnivorous microbial host for the bioconversion of lignocellulosic biomass. Front Bioeng Biotechnol. 2022;10: 827386.
Article
Google Scholar
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, et al. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol Biofuels. 2019;12:41.
Article
Google Scholar
Park M, Chen Y, Thompson M, Benites VT, Fong B, Petzold CJ, et al. Response of Pseudomonas putida to complex, aromatic-rich fractions from biomass. Chemsuschem. 2020;13:1–14.
Article
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: Update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705.
Article
CAS
Google Scholar
Wang B, Rezenom YH, Cho K-C, Tran JL, Lee DG, Russell DH, et al. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour Technol. 2014;161:162–70.
Article
CAS
Google Scholar
Linger JG, Ford LR, Ramnath K, Guarnieri MT. Development of Clostridium tyrobutyricum as a microbial cell factory for the production of fuel and chemical intermediates from lignocellulosic feedstocks. Front Energy Res. 2020;8.
Rodriguez A, Ersig N, Geiselman GM, Seibel K, Simmons BA, Magnuson JK, et al. Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresour Technol. 2019;286: 121365.
Article
CAS
Google Scholar
Yaguchi A, Franaszek N, O’Neill K, Lee S, Sitepu I, Boundy-Mills K, et al. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol. 2020;47:801–13.
Article
CAS
Google Scholar
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, et al. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels. 2017;10:241.
Article
Google Scholar
Geiselman GM, Zhuang X, Kirby J, Tran-Gyamfi MB, Prahl J-P, Sundstrom ER, et al. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microb Cell Fact. 2020;19:24.
Article
CAS
Google Scholar
Geiselman GM, Kirby J, Landera A, Otoupal P, Papa G, Barcelos C, et al. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks. Microb Cell Fact. 2020;19:208.
Article
CAS
Google Scholar
Kirby J, Geiselman GM, Yaegashi J, Kim J, Zhuang X, Tran-Gyamfi MB, et al. Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass. Biotechnol Biofuels. 2021;14:101.
Liu D, Geiselman GM, Coradetti S, Cheng Y-F, Kirby J, Prahl J-P, et al. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides. Biotechnol Bioeng. 2020;117:1418–25.
Article
CAS
Google Scholar
Wehrs M, Gladden JM, Liu Y, Platz L, Prahl J-P, Moon J, et al. Sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides. Green Chem. 2019;21:3394–406.
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, et al. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Fact. 2019;18:54.
Article
Google Scholar
Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresour Technol. 2021;322: 124522.
Article
CAS
Google Scholar
Kim J, Coradetti ST, Kim Y-M, Gao Y, Yaegashi J, Zucker JD, et al. Multi-Omics driven metabolic network reconstruction and analysis of lignocellulosic carbon utilization in Rhodosporidium toruloides. Front Bioeng Biotechnol. 2020;8: 612832.
Article
Google Scholar
Nuoendagula, Tsuji Y, Takata N, Sakamoto S, Nakagawa-Izumi A, Taniguchi T, et al. Change in lignin structure, but not in lignin content, in transgenic poplar overexpressing the rice master regulator of secondary cell wall biosynthesis. Physiol Plant. 2018;163:170–82.
Sakamoto S, Takata N, Oshima Y, Yoshida K, Taniguchi T, Mitsuda N. Wood reinforcement of poplar by rice NAC transcription factor. Sci Rep. 2016;6:19925.
Article
CAS
Google Scholar
Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA. 2009;106:13118–23.
Article
CAS
Google Scholar
de Vries L, Guevara-Rozo S, Cho M, Liu L-Y, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. Biotechnol Biofuels. 2021;14:167.
Article
Google Scholar
Sundstrom E, Yaegashi J, Yan J, Masson F, Papa G, Rodriguez A, et al. Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chem. 2018;20:2870–9.
Article
CAS
Google Scholar
Johnson CW, Salvachúa D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule. 2019;3:1523–37.
Lin C-Y, Vuu KM, Amer B, Shih PM, Baidoo EEK, Scheller HV, et al. In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): stacking reduced biomass recalcitrance with value-added co-product. Metab Eng. 2021;66:148–56.
Article
CAS
Google Scholar
Song J, Lu S, Chen Z-Z, Lourenco R, Chiang VL. Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol. 2006;47:1582–9.
Article
CAS
Google Scholar
Eudes A, Juminaga D, Baidoo EEK, Collins FW, Keasling JD, Loqué D. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact. 2013;12:62.
Article
CAS
Google Scholar
Lin C-Y, Li Q, Tunlaya-Anukit S, Shi R, Sun Y-H, Wang JP, et al. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa. Tree Genet Genomes. 2016;12:22.
Article
Google Scholar
Scavuzzo-Duggan T, Varoquaux N, Madera M, Vogel JP, Dahlberg J, Hutmacher R, et al. Cell wall compositions of Sorghum bicolor leaves and roots remain relatively constant under drought conditions. Front Plant Sci. 2021;12: 747225.
Article
Google Scholar
Özaydın B, Burd H, Lee TS, Keasling JD. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng. 2013;15:174–83.
Article
Google Scholar