Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant physiol. 2006;141(4):1533–43.
Article
CAS
Google Scholar
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, et al. Acyl-lipid metabolism. Arabidopsis Book. 2013;11:e0161.
Article
Google Scholar
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, et al. Acyl-lipid metabolism. Arabidopsis Book. 2010;8:e0133.
Article
Google Scholar
Shockey JM, Fulda MS, Browse JA. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol. 2002;129(4):1710–22.
Article
CAS
Google Scholar
Graham IA. Seed storage oil mobilization. Annu Rev Plant Biol. 2008;59:115–42.
Article
CAS
Google Scholar
Zhang CL, Mao K, Zhou LJ, Wang GL, Zhang YL, Li YY, Hao YJ. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. Plant physiol biochem PPB. 2018;132:320–32.
Article
CAS
Google Scholar
Xiao Z, Li N, Wang S, Sun J, Zhang L, Zhang C, Yang H, Zhao H, Yang B, Wei L, et al. Genome-wide identification and comparative expression profile analysis of the long-chain Acyl-CoA synthetase (LACS) gene family in two different oil content cultivars of Brassica napus. Biochem Genet. 2019;57(6):781–800.
Article
CAS
Google Scholar
Aznar-Moreno JA, Caleron MV, Martinez-Force E, Garces R, Mullen R, Gidda SK, Salas JJ. Sunflower (Helianthus annuus) long-chain acyl-coenzyme a synthetases expressed at high levels in developing seeds. Physiol Plant. 2014;150(3):363–73.
Article
CAS
Google Scholar
Shockey JM, Fulda MS, Browse J. Arabidopsis contains a large superfamily of acyl-activating enzymes. phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol. 2003;132(2):1065–76.
Article
CAS
Google Scholar
Babbitt PC, Kenyon GL, Martin BM, Charest H, Slyvestre M, Scholten JD, Chang KH, Liang PH, Dunaway-Mariano D. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry. 1992;31(24):5594–604.
Article
CAS
Google Scholar
Pulsifer IP, Kluge S, Rowland O. Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast. Plant Physiol Biochem PPB. 2012;51:31–9.
Article
CAS
Google Scholar
Lu S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J Cell Mol Biol. 2009;59(4):553–64.
Article
CAS
Google Scholar
Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta. 2010;231(5):1089–100.
Article
CAS
Google Scholar
Schnurr J, Shockey J, Browse J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell. 2004;16(3):629–42.
Article
CAS
Google Scholar
Jessen D, Olbrich A, Knufer J, Kruger A, Hoppert M, Polle A, Fulda M. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J. 2011;68(4):715–26.
Article
CAS
Google Scholar
Jawahir V, Zolman BK. Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion. Plant Physiol. 2021;185(1):120–36.
Article
Google Scholar
Fulda M, Shockey J, Werber M, Wolter FP, Heinz E. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J. 2002;32(1):93–103.
Article
CAS
Google Scholar
Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J. Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell. 2004;16(2):394–405.
Article
CAS
Google Scholar
Schnurr JA, Shockey JM, de Boer GJ, Browse JA. Fatty acid export from the chloroplast Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant physiol. 2002;129(4):1700–9.
Article
CAS
Google Scholar
Xu Y, Caldo KMP, Holic R, Mietkiewska E, Ozga J, Rizvi SM, Chen G, Weselake RJ. Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J. 2019;476(1):151–64.
Article
CAS
Google Scholar
Zhao L, Katavic V, Li F, Haughn GW, Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J Cell Mol Biol. 2010;64(6):1048–58.
Article
CAS
Google Scholar
Jessen D, Roth C, Wiermer M, Fulda M. Two activities of long-chain Acyl-Coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol. 2015;167(2):351-U575.
Article
CAS
Google Scholar
Kraljic K, Brkan V, Skevin D, Srcek VG, Radosevic K. Canolol dimer, a biologically active phenolic compound of edible rapeseed oil. Lipids. 2019;54(2–3):189–200.
Article
CAS
Google Scholar
Jeong GT, Park DH. Batch (one- and two-stage) production of biodiesel fuel from rapeseed oil. Appl Biochem Biotechnol. 2006;131(1–3):668–79.
Article
Google Scholar
Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman KD, Guo L. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant J Cell Mol Biol. 2018;94(6):915–32.
Article
CAS
Google Scholar
Rahman H, Kebede B. Mapping of seed quality traits in the C genome of Brassica napus by using a population carrying genome content of B. oleracea and their effect on other traits. Plant Genome. 2021;14(2):e20078.
Article
CAS
Google Scholar
Karunarathna NL, Wang H, Harloff HJ, Jiang L, Jung C. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnol J. 2020;18(11):2251–66.
Article
CAS
Google Scholar
Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 2011;156(3):1577–88.
Article
CAS
Google Scholar
Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biol. 2020;20(1):21.
Article
CAS
Google Scholar
Pongdontri P, Hills M. Characterization of a novel plant acyl-CoA synthetase that is expressed in lipogenic tissues of Brassica napus L. Plant Mol Biol. 2001;47(6):717–26.
Article
CAS
Google Scholar
Tan XL, Zheng XF, Zhang ZY, Wang Z, Xia HC, Lu CM, Gu SL. Long Chain Acyl-Coenzyme A synthetase 4 (BnLACS4) gene from Brassica napus enhances the yeast lipid contents. J Integr Agr. 2014;13(1):54–62.
Article
CAS
Google Scholar
Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3.
Article
CAS
Google Scholar
Guo X, Jiang M, Wan X, Hu C, Gong Y. Identification and biochemical characterization of five long-chain acyl-coenzyme A synthetases from the diatom Phaeodactylum tricornutum. Plant Physiol Biochem PPB. 2014;74:33–41.
Article
CAS
Google Scholar
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty acid and lipid transport in plant cells. Trends Plant Sci. 2016;21(2):145–58.
Article
CAS
Google Scholar
Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol. 2004;56(1):1–14.
Article
CAS
Google Scholar
Dlouhy O, Javornik U, Zsiros O, Sket P, Karlicky V, Spunda V, Plavec J, Garab G. Lipid polymorphism of the subchloroplast-granum and stroma thylakoid membrane-particles. I. (31)P-NMR spectroscopy. Cells. 2021. https://doi.org/10.3390/cells10092354.
Article
Google Scholar
Lummiss JA, Oliveira KC, Pranckevicius AM, Santos AG, dos Santos EN, Fogg DE. Chemical plants: high-value molecules from essential oils. J Am Chem Soc. 2012;134(46):18889–91.
Article
CAS
Google Scholar
Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants. Plant J Cell Mol Biol. 2008;54(4):640–55.
Article
CAS
Google Scholar
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. Plant genetics early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3.
Article
CAS
Google Scholar
Sillito D, Parkin IA, Mayerhofer R, Lydiate DJ, Good AG. Arabidopsis thaliana: a source of candidate disease-resistance genes for Brassica napus. Genome. 2000;43(3):452–60.
Article
CAS
Google Scholar
Breuers FK, Brautigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber AP. Dynamic remodeling of the plastid envelope membranes—A tool for chloroplast envelope in vivo localizations. Front Plant Sci. 2012;3:7.
Article
Google Scholar
Kitajima-Koga A, Baslam M, Hamada Y, Ito N, Taniuchi T, Takamatsu T, Oikawa K, Kaneko K, Mitsui T. Functional analysis of rice long-chain Acyl-CoA synthetase 9 (OsLACS9) in the chloroplast envelope membrane. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21062223.
Article
Google Scholar
Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S, Waugh MG. The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem. 2018;448(1–2):275–86.
Article
CAS
Google Scholar
Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J, Douce R. Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Lipids in photosynthesis: structure, function and genetics. Berlin: Springer; 1998. p. 21–52.
Google Scholar
Browse J, Somerville C. Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Biol. 1991;42(1):467–506.
Article
CAS
Google Scholar
Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol. 2004;7(3):270–6.
Article
CAS
Google Scholar
Zhao L, Katavic V, Li F, Haughn GW, Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J. 2010;64(6):1048–58.
Article
CAS
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biology Evolut. 2007;24(8):1596–9.
Article
CAS
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers In Department of Computer Science and Engineering. San Diego: University of California; 1994.
Google Scholar
Wang JL, Tang MQ, Chen S, Zheng XF, Mo HX, Li SJ, Wang Z, Zhu KM, Ding LN, Liu SY, et al. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol J. 2017;15(8):1024–33. https://doi.org/10.1111/pbi.12696.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.
Article
CAS
Google Scholar
Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33(5):949–56.
Article
CAS
Google Scholar
Wood CC, Petrie JR, Shrestha P, Mansour MP, Nichols PD, Green AG, Singh SP. A leaf-based assay using interchangeable design principles to rapidly assemble multistep recombinant pathways. Plant Biotechnol J. 2009;7(9):914–24.
Article
CAS
Google Scholar
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc. 2006;1(4):2019–25.
Article
CAS
Google Scholar
Wang Z, Mao H, Dong CH, Ji RQ, Cai L, Fu H, Liu SY. Overexpression of Brassica napus MPK4 Enhances Resistance to Sclerotinia sclerotiorum in Oilseed Rape. Mol Plant Microbe In. 2009;22(3):235–44.
Article
CAS
Google Scholar
Larson TR, Graham IA. Technical advance: a novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J. 2001;25(1):115–25.
CAS
Google Scholar
Larson TR, Edgell T, Byrne J, Dehesh K, Graham IA. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds. Plant J. 2002;32(4):519–27.
Article
CAS
Google Scholar
Melis A, Spangfort M, Andersson B. Light-absorption and electron-transport balance between photosystem II and photosystem I in spinach chloroplasts. Photochem Photobiol. 1987;45(1):129–36.
Article
CAS
Google Scholar