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Abstract 

Background Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and bio-
chemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities 
of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to 
strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance 
and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and 
eco-friendly cold plasma.

Results It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in syn-
thetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibi-
tors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation 
through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing 
time (10–30 s), discharge power (80–160 W), and working pressure (120–180 Pa) using cold atmosphere plasma 
(CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters 
(20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), 
ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A 
serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance 
via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 
(Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and 
ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and 
single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose 
metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved 
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the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. 
mobilis.

Conclusions Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred 
upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain bio-
catalyst for the efficient production of lignocellulosic biofuels and biochemicals.

Keywords Bioethanol, Zymomonas mobilis, Cold atmosphere plasma (CAP), Genome resequencing, RNA-Seq 
sequencing

Background
As a potential resource for bioethanol production, val-
orization of lignocellulosic biomass available in massive 
quantities significantly offered positive environmental 
impacts through lessening greenhouse gas and other pol-
lutant emissions [1, 2]. It is a crucial step for pretreatment 
process in biorefinery to disrupt biomass recalcitrance 
[3–5]. However, the resulting furanic aldehydes [2-fural-
dehyde (furfural) and 5-hydroxymethyl-2-furaldehyde 
(HMF)], weak organic acids (acetic acid, formic acid and 
levulinic acid) and phenolic aldehydes (4-hydroxybenza-
ldehyde, syringaldehyde and vanillin) seriously inhibited 
cell growth and product accumulation for fermenting 
strains [6–14]. Therefore, to make lignocellulose utili-
zation of bioethanol more competitive with fossil fuel, 
genetic modification of fermenting strains was carried 
out to efficiently tolerate the stress of particularly most 
toxic aldehyde inhibitors [15–17].

Of high ethanol productivity and flexible genetic 
manipulation feasibility, the ethanologenic strain Zymo-
monas mobilis ZM4 performed its great potential in the 
lignocellulosic biorefinery fields [18, 19]. However, well 
tolerating furanic acids and phenolic acids, Z. mobilis 
was sensitive to furanic and phenolic aldehydes [10, 20]. 
Many efforts had been performed to enhance inhibitor 
tolerance for Z. mobilis, such as directed gene evolution 
[21–24], gene recombination [25–30] and gene mutation 
[31]. However, the growing efforts were still tentative for 
the aldehyde inhibitors-tolerant strain Z. mobilis.

Plasma, a quasi-neutral ionized or partially ionized gas 
in electric discharge, comprised the varied charged par-
ticles, metastable particles, molecules, neutral atoms, 
particles and photons [32, 33]. According to particles 
temperature, plasma was classified into equilibrium and 
non-equilibrium [34]. As the non-equilibrium plasma, 
low temperature plasma (LTP), such as atmospheric and 
room temperature plasma (ARTP) and low vacuum and 
room temperature plasma (LVRTP), could minimize the 
damaging effects on organisms and thermolabile matri-
ces when delivered at room temperature [35]. Although 
ARTP could be widely carried out to treat microorganism 
suspension under non-vacuum condition, mutagenesis 
operation of the industrial strains was largely limited for 

its low energy generation and longstanding processing 
time [36–38]. LVRTP, also known as cold atmospheric 
plasma (CAP) and abbreviated as cold plasma, artificially 
generated at room temperature under atmospheric pres-
sure, had also showed a brilliant prospect on the genetic 
modification of fermenting strains for its potent energy-
efficient and eco-friendly advanced oxidation capacity in 
industrial fields [39–44]. To be sure, it was also applied 
to convey stress tolerance [45, 46]. However, little was on 
aldehyde inhibitors tolerance and bioethanol production 
for Z. mobilis ZM4 using cold plasma.

The current study tried to enhance aldehyde inhibi-
tors tolerance and bioethanol production in corn stover 
hydrolysates (CSH) using cold plasma. Here, it assayed 
processing time, discharge power and working pres-
sure to establish the optimum parameters. Furthermore, 
genetic variation and transcriptional profiling were 
uncovered through genome resequencing-based single 
nucleotide polymorphisms (SNPs) and transcriptional 
sequencing. This study would provide a strain biocata-
lyst as the potential producer of cellulosic biofuels and 
biochemicals.

Materials and methods
Feedstock and reagents
The commercial enzyme cellulase purchased from 
Sigma-Aldrich (St Louis, MO, USA) was determined 
of the 235 FPU/mL of filter paper activity following the 
NREL protocols LAP-006 method [47]. All the other ana-
lytical grade chemicals were from China National Phar-
maceutical Group Co., Ltd (Sinopharm).

Strain culture
Z. mobilis ZM4 was cultured in corn stover hydrolysate 
(CSH) liquids or RM (Rich Medium) medium contain-
ing 20.0  g/L glucose, 2.0  g/L  KH2PO4, and 10.0  g/L 
yeast extract. A 1.0  mL of seed cultures was inoculated 
in 100 mL fresh RM medium in a 250-mL flask without 
shaking at 30  °C for the single-factor assays after cold 
plasma pretreatment. Sampling was at a 4 h interval till 
24  h. The other fermentation assays were carried out 
with a 10% inoculation. It was added 4-hydroxybenzal-
dehyde, syringaldehyde, vanillin, furfural and HMF with 
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the corresponding concentration of CSH to assay the 
tolerance of aldehyde inhibitors. For genome resequenc-
ing and RNA-Seq sequencing assays, the fresh culture 
of Z. mobilis ZM4 was harvested from 100 mL cultures 
at 4  h for RNA isolation. All assays were carried out in 
triplicate.

CSH pretreatment
Harvested from Lianyungang, Jiangsu province, China, 
in the fall of 2021, corn stover milled to a size < 3  mm 
was pretreated with dilute acid [48, 49]. Hydrolysis of 
the pretreated corn stover was carried out in 134 °C for 
1  h. The pretreated corn stover contained 49.93% cellu-
lose, 22.80% hemicellulose and 20.35% lignin determined 
by the protocol described in NREL/TP-510-42618 [50]. 
Corn stover hydrolysates contained 22.94  g/L glucose, 
0.01  g/L 4-hydroxybenzaldehyde, 0.55  g/L syringalde-
hyde, 0.08  g/L vanillin, 0.16  g/L furfural and 0.75  g/L 
HMF.

Cold plasma pretreatment
Processed with cold plasma generated from the radio 
frequency power supply (13.56  MHz) using helium as 
working gas [51], Z. mobilis ZM4 streaked on the fresh 
RM plates cultured at 30 °C overnight was placed in the 
chamber of a cold plasma modification apparatus. The 
test parameters were covered as follows: processing time 
10–30 s, discharge power 80–160 W and working pres-
sure 120–180  Pa. After processed, the treated samples 
and the un-treated controls were re-activated by streak-
ing on the fresh medium before fermentation assays.

Genome resequencing
To confirm the genetic changes for Z. mobilis ZM4 pre-
treated with cold plasma under the optimum parameters, 
genome resequencing-based single nucleotide polymor-
phisms (SNPs) were performed by Beijing Novogene Bio-
informatics Technology Co., Ltd (China).

Genomic DNA was quantified using  Qubit® 2.0 Fluo-
rometer (Thermo Scientific) after isolated according to 
the SDS method [52]. It generated sequencing libraries 
using the NEBNextR  Ultra™ DNA Library Prep kit for 
Illumina (NEB, MA, USA) following the manufactur-
er’s recommendations. After purified with AMPure XP 
system and analyzed on Agilent 2100 Bioanalyzer (Ali-
gent, Santa Clara, CA), it sequenced the whole genome 
of Z. mobilis ZM4 using Illumina NovaSeq PE150. The 
original data derived from high-throughput sequencing 
were transformed into raw sequenced reads using base 
calling of CASAVA software before stored in FASTQ 
format. BWA software (version 0.7.8) and SAMTOOLS 
software (version 0.1.18) were separately used to map 

the Reads to the reference sequence of the wild Z. 
mobilis ZM4 and count the coverage of the reference 
sequence to the Reads [53, 54]. SNPs (single nucleotide 
polymorphisms)/InDel (insertion and deletion) analy-
sis and SV (structural variation) analysis were carried 
out using SAMTOOLS software (version 0.1.18) and 
BreakDancer software (version 1.4.4), respectively [55]. 
To show reads coverage, SNPs distribution and InDel 
information, the online Circos software (version 0.64) 
was used to present the variation map of the whole 
genome [56]. The raw data of SNPs were submitted in 
European Variation Archive (EVA) [57]. For genome 
sequencing, besides the prepared genomic DNA sam-
ples pre-checked repeatedly, it also used DeconSeq 
(http:// decon seq. sourc eforge. net/) to eliminate the 
false signals from the potential bacterial or fungi con-
taminations before the assembly and the downstream 
analysis.

RNA sequencing
Following the manufacturer’s instructions, the total 
RNA was isolated from Z. mobilis ZM4 samples using 
 TRIzol® reagent (Invitrogen, Carlsbad, CA, USA). The 
RNA was purified with the NucleoSpin RNA clean-up 
kit (Macherey–Nagel, Düren, Germany) and qualified 
with RIN (RNA Integrity Number) ≥ 7.0 and the ratio 
of 23S rRNA: 16S rRNA ≥ 15: 1 using Bioanalyzer 2100 
(Aligent, Santa Clara, CA) before kept at −80 °C.

RNA-Seq sequencing assays were carried out by Capi-
talBio Technology Co., Ltd, Beijing, China. It quantified 
the initial concentration of the total RNA as 0.1–1.0 μg 
using Qubit RNA assay kit following the manufactur-
er’s instructions. The fragmented and primed mRNA 
from the rRNA depleted total RNA was used as the 
templates to synthesize the first strand of cDNA. Using 
dA-Tailed and ligating adaptor cDNA as the templates, 
PCR products were quantified with the Qubit DNA 
HS assay kit and qualified with 2100 Bioanalyzer chip. 
RNA-Seq sequencing assays were carried out on the 
Illumina NovaSeq 6000 platform. It used FastQ Screen 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
fastq_ screen/) to screen contamination. HTSeq (high-
throughput sequencing), a Python framework, was 
used to calculate gene counts of mRNA [58]. The differ-
entially expressed mRNA was determined with DESeq 
[59]. Gene Ontology (GO) and KEGG pathway analysis 
were separately used DAVID (Database for Annotation, 
Visualization, and Integrated Discovery) and IPA (Inge-
nuity pathway analysis) software with p < 0.05. Here, 
differentially expressed genes (DEGs) was defined as 
an absolute value of  log2 ratio ≥ 1.0, and the significant 
DEGs were required an additional p ≤ 0.05.

http://deconseq.sourceforge.net/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
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HPLC analysis
Glucose and ethanol were determined at 55  °C and 
0.6 mL/min using 5.0 mM  H2SO4 as mobile phase using 
Thermo  Scientific™  Dionex™  Ultimate™ 3000 high per-
formance liquid chromatography (HPLC) equipped 
with a refractive index detector ERC RefractoMax 520 
(Thermo Scientific, Waltham, MA, USA) and a Aminex 
HPX-87H column (Bio-Rad, Hercules, CA, USA). 
Furanic aldehydes and phenolic aldehydes were deter-
mined according to the previous methods [10, 60].

Results
Bioethanol fermentability in CSH weaker than that in 
synthetic medium for Z. mobilis
Here, it compared bioethanol fermentability in CSH and 
RM synthetic medium for Z. mobilis ZM4 (Fig.  1). Cell 
growth in RM was higher by 12.57%, 61.18% and 36.52% 
separately at 4, 8 and 12 h than that in CSH (Fig. 1a). The 
glucose consumption in RM medium was 65.48%, 90.66% 
and 92.29% more than that in CSH (Fig. 1b). Bioethanol 
concentration in RM medium was 59.46%, 68.42% and 
82.17% more than that in CSH (Fig.  1c). Interestingly, 
0.01 g/L 4-hydroxybenzaldehyde, 0.55 g/L syringaldehyde 
and 0.08  g/L vanillin in CSH were degraded by 79.36% 

at 24 h, 81.76% at 48 h and 73.05% at 72 h, respectively 
(Fig.  1d). However, 0.16  g/L furfural and 0.75  g/L HMF 
were degraded by 63.66% and 82.90% at 72  h, respec-
tively. Therefore, bioethanol fermentability in CSH was 
obviously weaker than that in RM synthetic medium for 
Z. mobilis, and aldehyde inhibitors were predicted as one 
of the main bottlenecks for the efficient production of 
bioethanol using CSH.

Aldehyde inhibitors in CSH weakened bioethanol 
fermentability
In order to verify aldehyde inhibitors in CSH as one of 
the blocks for bioethanol fermentability, it carried out 
fermentation assays in synthetic RM medium by add-
ing aldehyde inhibitors of the corresponding concentra-
tion in CSH (Fig. 2). Compared with the control, it found 
that cell growth was inhibited by 15.90%, 26.98%, 15.13%, 
19.56%, 24.66% and 36.71% at 4 h for 0.01 g/L 4-hydroxy-
benzaldehyde, 0.55  g/L syringaldehyde, 0.08  g/L vanil-
lin, 0.16 g/L furfural, 0.75 g/L HMF and the above mixed 
aldehydes and by 16.23%, 27.40%, 24.35%, 20.63%, 33.00% 
and 66.61% at 8  h (Fig.  2a). Glucose consumption was 
inhibited by 44.51%, 43.26%, 12.94%, ND (not detected), 
ND, and 75.05% at 4  h and by 50.59%, 38.18%, 28.34%, 
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Fig. 1 Ethanol fermentability in RM synthetic medium and CSH for Z. mobilis ZM4. a Cell growth; b glucose consumption; c ethanol concentration; 
d aldehyde conversion in CSH
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27.17%, 36.70% and 93.96% at 8  h (Fig.  2b). Bioethanol 
concentration was inhibited by 11.32%, 15.85%, 10.93%, 
11.79%, 15.62% and 18.24% at 4  h; by 16.89%, 26.43%, 
36.84%, 21.39%, 37.78% and 52.54% at 8  h (Fig.  2c). It 
indicated that the inhibitory intensity of the mixed alde-
hyde inhibitors was the highest for cell growth, glucose 
consumption and ethanol accumulation.

Figure  2d illustrates the conversion of aldehydes. 
It indicated that 0.08  g/L vanillin was degraded by 
82.60%, 85.73% and 92.67% at 4, 8, and 12  h, respec-
tively. 0.16  g/L furfural was separately degraded by 

33.36%, 54.44% and 69.89%. However, no degradation 
of 0.75 g/L HMF, 0.01 g/L 4-hydroxybenzaldehyde and 
0.55  g/L syringaldehyde were found at 4 and 8  h, and 
it separately determined 23.37%, 40.79% and 10.19% of 
degradation at 12 h. Equally, when five aldehydes were 
mixed together, 0.01  g/L 4-hydroxybenzaldehyde was 
preferentially degraded, followed by 0.55  g/L syrin-
galdehyde (Fig.  2e). Totally, 0.01  g/L 4-hydroxyben-
zaldehyde, 0.55  g/L syringaldehyde, 0.08  g/L vanillin, 
0.16  g/L furfural and 0.75  g/L HMF were degraded at 
12  h by 81.89%, 93.28%, 14.71%, 14.76% and 24.74%, 
respectively.
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Fig. 2 The effect of aldehyde inhibitors on ethanol fermentability for Z. mobilis ZM4. a Cell growth; b glucose consumption; c ethanol 
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Overall, it certainly confirmed that the mixture of alde-
hyde inhibitors with the corresponding concentration of 
the CSH obviously blocked bioethanol fermentability.

Cold plasma pretreatment for Z. mobilis
In order to acquire a robust strain with the ability to tol-
erate aldehyde inhibitors of lignocellulosic hydrolysates, 
Z. mobilis ZM4 was treated using cold plasma as the 
mutagenesis tool to increase bioethanol production. 
Here, it carried out pretreatment assays of cold plasma 
under the different processing time, discharge powder 
and working pressure.

It assayed the effect of different processing time of cold 
plasma on ethanol fermentability for Z. mobilis ZM4 at 
the default discharge power (135 Pa) and working pres-
sure (120 W) (Fig. 3). Compared with the control (0.02), 
cell growth just for 20 s was increased by 212.28% at 8 h. 
Convincingly, cell growth of Z. mobilis ZM4 was sepa-
rately increased by 188.89%, 43.06%, 2191.67%, 30.56% 
and 59.72% for 10, 15, 20, 25 and 30  s at 12 h (Fig. 3a). 
Glucose consumption was enhanced by 130.05% for 
20 s at 8 h and by 95.32%, 85.39%, 352.50%, 65.14% and 
29.38% for 10, 15, 20, 25 and 30 s at 12 h (Fig. 3b). Etha-
nol concentration was facilitated by 152.61% for 20  s at 
8 h and by 102.83%, 41.51%, 264.00%, 32.26% and 69.73% 
for 10, 15, 20, 25 and 30 s at 12 h (Fig. 3c). Convincingly, 
ethanol fermentability for Z. mobilis ZM4 was enhanced 
after pretreated under all the processing time, and it 

achieved the most maximal ethanol fermentability at 
20 s.

Furthermore, the effect of different discharge power of 
cold plasma on ethanol fermentability was examined at 
the default parameter of 135 Pa and 15 s (Fig. 3). Com-
pared with the control (0.02 and 0.14), cell growth of 
Z. mobilis ZM4 for 140 W was separately increased by 
21.67% at 8  h and 126.82% at 12  h (Fig.  3a). Compared 
with the control (3.18  g/L and 10.00  g/L), glucose con-
sumption for 140 W was separately enhanced 46.08% at 
8 h and 23.29% at 12 (Fig. 3b). Bioethanol concentration 
was also facilitated by 67.50% and 61.78% (Fig. 3c). In all, 
bioethanol fermentability was increased for 140 W after 
pretreated with cold plasma.

Bioethanol fermentability was also assayed at different 
working pressure of cold plasma at the default parameter 
(120 W and 15 s) (Fig. 3). Compared with the control, the 
increase just for 165 Pa was obtained by 20.15% for cell 
growth, 29.16% for glucose consumption and 22.98% for 
ethanol concentration at 12 h (Fig. 3a, b, c). It indicated 
that 135  Pa was the optimum parameter for working 
pressure.

In this work, the ethanol fermentability for Z. mobilis 
ZM4 was carried out under the above assayed optimum 
parameters of cold plasma (20 s, 165 Pa, 140 W) (Fig. 3). 
Cell growth was increased by 238.56% and 52.57% at 8 
and 12  h, respectively (Fig.  3a), glucose consumption 
was increased by 50.85% and 23.43% (Fig. 3b) and etha-
nol concentration was increased by 79.48% and 39.74% 
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Fig. 3 Ethanol fermentability of Z. mobilis ZM4 treated with cold plasma under the optimized parameters (20 s, 15 Pa, 140 W) in RM medium. a Cell 
growth; b glucose consumption; c ethanol concentration
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(Fig.  3c). It indicated that cold plasma pretreatment 
brought about the facilitated ethanol fermentability for Z. 
mobilis ZM4.

Genetic and transcriptional analysis for Z. mobilis ZM4 
pretreated with cold plasma
In order to confirm the genetic changes and transcrip-
tional landscapes derived from cold plasma pretreat-
ment for Z. mobilis ZM4, it simultaneously carried 
out genome-based resequencing and transcriptomic 
sequencing.

Figure  4 presents the whole genome mutation profile. 
SNPs analysis revealed that cold plasma brought about 
three point mutation (Fig.  4a), including ZMO00694 
(E220V) at the position of 691271 for genome and 659 
for conserved gene sequence (Fig. 4b), ZMO0843 (L471L) 
at the position of 849208 for genome and 1411 for con-
served gene sequence and ZMO0843 (P505H) at the 
position of 849311 for genome and 1514 for conserved 
gene sequence (Fig.  4c). It indicated that cold plasma 
really led to a certain mutations.

Figure  5 shows the results of RNA-Seq sequencing. It 
was found that cold plasma pretreatment produced 33 
DEGs (Fig. 5a). Except one gene without regulation infor-
mation (ZMOr007 ending 5S ribosomal RNA) and seven 
down-regulated DEGs, including ZMO0253 and ZMO_
RS09265 (type I secretion outer membrane protein, TolC 
family), ZMO2035 (conserved hypothetical replication 
initiator and transcription repressor protein), ZMO0095 
(hypothetical protein), ZMOr003 and ZMOr006 (16S 
ribosomal RNA) and ZMO1941 (Type IV secretory 
pathway protease TraF-like protein), the other 25 up-
regulated DEGs were involved with hypothetical protein, 
levansucrase, protein of unknown function DUF847/
DUF81, phage terminase, large subunit, PBSX family, 
putative phage major head protein, conserved hypotheti-
cal protein, constituent protein and thioredoxin domain 
protein (Fig.  5a). Biological process was enriched sin-
gle-organism process (GO:0044699), metabolic process 
(GO:0008152), cellular process (GO:0009987), regulation 
of biological process (GO:0050789), biological regula-
tion (GO:0065007) and cellular component organization 
or biogenesis (GO:0071840). Cellular component was 
enriched membrane (GO:0016020), cell (GO:0005623), 
membrane part (GO:0044425), cell part (GO:0044464) 
and extracellular region (GO:0005576). Molecular func-
tion was enriched catalytic activity (GO:0003824) and 
transporter activity (GO:0005215) (Fig.  5b). For KEGG 
pathway analysis, it enriched starch and sucrose metabo-
lism, galactose metabolism, two-component system and 
metabolic pathways in order (Fig.  5c). It revealed that 
cold plasma also contributed to a specific transcriptional 
profiling.

The augmented aldehyde inhibitors tolerance 
and bioethanol fermentability for the mutant strain
Here, the resulting aldehyde inhibitors were derived 
from corn stover pretreated with dilute  H2SO4 (Fig. 6a). 
Although it had confirmed that aldehyde inhibitors 
weakened ethanol fermentability in CSH (Fig. 1), it knew 
nothing of the enhancement of ethanol fermentability 
and aldehyde inhibitor tolerance for the mutant Z. mobi-
lis ZM4 (Fig. 6b). Therefore, bioethanol fermentability for 
the mutated strain was further assayed in CSH (Fig. 6c). 
Compared with the control, cell growth of the Z. mobilis 
ZM4 was separately enhanced in 12 and 24 h by 112.59% 
and 47.95%, glucose consumption was facilitated by 
144.85% and 33.32% and ethanol titer was increased by 
455.31% and 51.31% (Fig. 6c). It proved that cold plasma 
treatment enhanced bioethanol fermentability for the 
mutant Z. mobilis ZM4 under the optimum param-
eters (20  s, 165  Pa and 180 W). Convincingly, 0.01  g/L 
4-hydroxybenzaldehyde, 0.55  g/L syringaldehyde and 
0.08  g/L vanillin were separately degraded by 87.22% at 
24 h, 81.68% at 48 h and 87.82% at 60 h. The conversion 
rate of 0.16  g/L furfural and 0.75  g/L HMF was 76.31% 
and 84.55%, respectively, at 72 h. Therefore, it concluded 
that cold plasma pretreatment simultaneously conferred 
the robustness of aldehyde inhibitors tolerance and 
bioethanol fermentability for the mutant Z. mobilis ZM4.

Discussion
With lots of desirable industrial strain biocatalysts 
brought about, Z. mobilis was always regarded as a robust 
ethanologen chassis, especially for bioethanol production 
using lignocellulosic materials. However, the lignocellu-
lose-derived furanic aldehydes and phenolic aldehydes 
seriously blocked bioethanol accumulation for Z. mobilis 
[10, 29, 61–63].

The degradation of biomass during pretreatment may 
bring about the release of sugar monomers, furanic 
compounds, weak acids and phenolic compounds. The 
inhibitory intensity of the above inhibitors was usually 
different for the type of biorefinery strains [64–66]. For 
Z. mobilis ZM4, furanic aldehydes and phenolic alde-
hydes were more toxic than weak acids (acetic acid, for-
mic acid, and levulinic acid) [10, 20, 62]. In this work, it 
confirmed that aldehyde inhibitors weakened the bioeth-
anol fermentability in CSH. The previous study showed 
that 4-hydroxybenzaldehyde was the most toxic phenolic 
aldehyde for Z. mobilis ZM4 under the same concentra-
tion of 5  mM, followed by vanillin and syringaldehyde 
[10]. Here, it was illustrated that the toxicity of aldehyde 
inhibitors largely depended on their concentration in 
CSH for Z. mobilis ZM4. Here, inhibitory intensity of cell 
growth (mixed aldehydes > 0.75 g/L HMF > 0.08 g/L vanil-
lin > 0.55 g/L syringaldehyde > 0.16 g/L furfural > 0.01 g/L 



Page 8 of 15Yi et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:102 

(b) Mutation of ZMO0694 (YfdX family protein, 708 bp)
658 (G) - 659 (A) - 660(A) [E]

(G) (T) (A) [V] E220V

Fig. 4 SNPs analysis for Z. mobilis ZM4 pretreated with cold plasma under the optimized parameters. a The whole genome mutation profile 
(WGMP). The outermost circle was the position coordinate axes of reference sequence. It showed InDel distribution, SNP numbers distribution, 
coverage depth of Reads, GC mol% content and GC skew value distribution of reference genome from the inside out. b Mutation of ZMO0694. c 
Mutation of ZMO0843 
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4-hydroxybenzaldehyde), glucose consumption (mixed 
aldehydes > 0.01  g/L 4-hydroxybenzaldehyde > 0.75  g/L 
HMF > 0.55  g/L syringaldehyde > 0.08  g/L vanil-
lin > 0.16  g/L furfural) and ethanol production (mixed 
aldehydes > 0.75  g/L HMF > 0.080  g/L vanillin > 0.55  g/L 
syringaldehyde > 0.16  g/L furfural > 0.01  g/L 4-hydroxy-
benzaldehyde) were separately established. Obviously, 
mixed aldehydes were the most toxic for Z. mobilis, 
and thus well proved that the bioethanol fermentabil-
ity was weakened by aldehyde inhibitors in CSH. What 
needs to be noted was that synergistic inhibition should 
be stressed, although Z. mobilis ZM4 was well tolerant 
furanic acids and phenolic acids [20]. For example, etha-
nol production was inhibited for the synergistic inhibi-
tion for the high concentration weak acid (acetic acid, 
formic acid and levulinic acid) and furan aldehydes (fur-
fural and HMF) [67].

The effect of cold plasma on organism modification 
was tightly related to its generating device, the com-
position of the working gas, the distance from the cold 
plasma source to the samples and processing parameters 
including processing time, discharge power and work-
ing pressure [68]. Here, the above processing parameters 
were examined. The continuous increase for bioethanol 
production separately at 140 W of discharge power and 
165 Pa of working pressure was possibly derived from the 
density of active substances from working gas, and thus 

was agreed with the documented data [69]. Interestingly, 
bioethanol fermentability was enhanced under all the 
assayed processing time for cold plasma pretreatment 
(10, 15, 20, 25, and 30 s). Combining the enhanced effect 
of discharge power and working pressure, it predicted 
that the accumulation of active substances might largely 
depend on the time span for cold pretreatment. On the 
other hand, it predicted that a certain span of time was 
necessary to process outer membrane structure of Gram-
negative bacteria Z. mobilis ZM4 enough for the efflux 
of the small molecules (such as glucose). Therefore, the 
parameter of processing time might play a very vital role 
for Z. mobilis ZM4 to accumulate bioethanol.

Here, it was found that cold plasma pretreatment 
under the sub-lethal condition (20 s, 140 W and 165 Pa) 
produced a mutagenic effect on Z. mobilis ZM4, and thus 
was supported by the mutagenicity from cold plasma 
in bacteria in a parameter-dependent manner [43, 44, 
70–72].

The impact of the plasma largely relied on the kind of 
an organism and its specific cell properties [73, 74]. In 
this study, cold plasma pretreatment produced a specific 
gene transcriptional profiling for Z. mobilis ZM4, and 
thus was consistent with the previous studies [51]. Some 
candidates from the screened 33 DEGs were presented as 
follows: (1) the two genes ZMO0253 and ZMO_RS09265 
encoding type I secretion outer membrane protein (from 

(c) Mutation of ZMO0843 (Arginyl-tRNA synthetase, 1725 bp)
1411 (C) - 1412 (T) - 1413 (A) [L]

(T) (T) (A) [L] L471L
1513 (C) - 1514 (C) - 1515 (T) [P]

(C) (A) (T) [H] P505H

Fig. 4 continued
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TolC family) within the RND (Resistance-Nodulation-
cell Division) efflux systems were differentially down-
regulated after pretreated with cold plasma. Known 
as an ABC transporter system responsible for protein 

secretion without the cleavage of the signal sequence, 
outer membrane proteins were confirmed to involve 
with type I protein secretion and the efflux of the small 
molecules [75]. Outer membrane structure always made 
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Fig. 6 Ethanol fermentability in CSH for the pretreated Z. mobilis ZM4 using cold plasma. a The origin of glucose and aldehyde inhibitors in CSH; b 
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Gram-negative bacteria highly sensitive to peroxidation 
and more inclined to electrostatic disruption under cold 
plasma system [73], and thus well elucidated the down-
regulation of outer membrane for Z. mobilis ZM4 after 
pretreated with cold plasma. (2) Of ionized gases with 
high energy of electrons and relatively low temperature of 
gas particles, cold plasmas could affect the exposed living 
cells [76]. Typically generated by various electrical dis-
charges, cold plasma pretreatment itself could produce a 
stress of high energy and low temperature. It proved that 
low temperature could affect membrane fluidity, gene 
expression, protein synthesis and protein complexes sta-
bility in plants [77]. Therefore, the down-regulated gene 
ZMO1941 (Type IV secretory pathway protease TraF-like 
protein) was also predicted as one of the contributors for 
its assayed gene function of stress tolerance [78]. (3) As 
the major components of ribosomes, ribosomal RNAs 
(rRNAs) responsible for their catalytic activity would 
undergo many modifications of ribosome biogenesis 
including transcription [79–82]. Here, it predicted that 
chilling stress derived from cold plasma might contrib-
ute to the transcriptional change for down-regulation of 
the two ribosomal genes ZMOr003 and ZMOr006. (4) 
Levansucrase (EC2.4.1.10), a fructosyltransferase exo-
enzyme, was of with sucrose hydrolytic and levan bio-
synthetic activities. Specially, a certain amount of the 
levan could provide protection against diverse stresses 
protection [83–85]. Therefore, the two differentially 
up-regulated genes ZMO0375 and ZMO0374 encoding 
levansucrase were predicted to relate with stress resist-
ance-derived from cold plasma pretreatment. (5) Here, 
ZMO1705 encoding thioredoxins was up-regulated for 
Z. mobilis ZM4 after pretreated with cold plasma. Of a 
conserved active site motif (CGPC), thioredoxins (Trxs) 
could well perform stress tolerance through redox regu-
lation of target proteins [86]. Convincingly, Trxs played 
a fundamental role in the stress response of cellular pro-
cesses in microorganisms [87–90]. Most importantly, 
among 33 DEGs, the up-regulated genes were prevalent, 
and thus was predicted that cold plasma facilitated the 
transcriptional expression. On conclusion, cold plasma 
pretreatment conveyed stress tolerance for Z. mobilis, 
and thus was supported by some studies [91].

Convincingly, it confirmed that cold plasma pretreat-
ment simultaneously reinforced aldehyde inhibitors tol-
erance and bioethanol fermentability for Z. mobilis ZM4 
in CSH. It was proposed the genetic and transcriptional 
changes for the increased bioethanol fermentability 
achieved both in synthetic medium and CSH. However, 
most importantly, why did cold plasma pretreatment 
deliver stress tolerance of aldehyde inhibitors in CSH 
for the train Z. mobilis ZM4? The potential reasons were 
given as follows: (1) usually, mutations derived from the 

adaptation and evolution could make the bacteria fit and 
respond to a certain stress environment. Here, it pre-
dicted that the three identified point mutation derived 
from cold plasma pretreatment were possible in charge of 
the augmented aldehyde inhibitor tolerance and bioeth-
anol fermentability for Z. mobilis ZM4, and thus was 
supported by YfdX family protein (ZMO0694) and argi-
nine-tRNA ligase (argS) (ZMO0843) involved with stress 
resistance [92]; (2) Z. mobilis could efficiently accumulate 
bioethanol after defensed themselves against all the pos-
sible environmental threats, such as the toxic aldehyde 
inhibitors and cold plasma pretreatment. During this 
process, Z. mobilis cells would have to start a series of 
complex regulatory networks to overcome the adverse 
conditions and maintain their cell integrity. The stress 
resistance-related candidate genes might be responsible 
for the stress of aldehyde inhibitors, and thus be in agree-
ment with the documented molecular mechanism of the 
stress tolerance [29, 93, 94].

The future study would be carried out as follows: firstly, 
the genetic stability of the mutant Z. mobilis from cold 
plasma pretreatment should be confirmed, and thus 
would provide a potential clue for the applications of 
the methodology in biorefinery fields. Secondly, it would 
assay the contribution of the three mutation sites to 
stress tolerance and bioethanol production. Last but not 
the least, the established gene and pathway datasets from 
deep sequencing would be investigated by gene engineer-
ing to promote the stress tolerance of the lignocellulose-
derived inhibitors and the accumulation of biofuels and 
biochemicals from biomass for biorefinery strains.

Conclusions
The work was focused on the enhancement of aldehyde 
inhibitors stress tolerance and bioethanol fermentability 
in CSH for Z. mobilis ZM4 pretreated with cold plasma. 
Compared with the control, a 6.99  g/L of bioethanol 
accumulation (equal to a 51.31% increase) at 24  h was 
acquired from Z. mobilis pretreated with cold plasma 
(20 s, 140 W and 165 Pa) in CSH. The specific genetic and 
transcriptional changes were also revealed for the aug-
mented bioethanol production for Z. mobilis ZM4. This 
work would provide a strain biocatalyst for the efficient 
production of biofuels and other biochemicals in biore-
finery fields.
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