Dürre P: Biobutanol: An attractive biofuel. Biotechnol J 2007, 2: 1525-1534.
Article
Google Scholar
Minteer S: Alcoholic fuels. 6000 Broken Sound Parkway NW, USA: CRC Press Taylor & Francis Group; 2006.
Book
Google Scholar
Savage DF, Way J, Silver PA: Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 2008, 3: 13-16.
Article
CAS
Google Scholar
Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH: Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 2006, 71: 587-597.
Article
CAS
Google Scholar
Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Rev 1986, 50: 484-524.
CAS
Google Scholar
Dürre P: New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appli Microbiol Biotechnol 1998, 49: 639-648.
Article
Google Scholar
Ezeji TC, Qureshi N, Blaschek HP: Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 2007, 18: 220-227.
Article
CAS
Google Scholar
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008, 10: 305-311.
Article
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nat 2008, 451: 86-89.
Article
CAS
Google Scholar
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H: Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2008, 77: 1305-1316.
Article
CAS
Google Scholar
Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7: 1475-2859.
Article
Google Scholar
Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K: Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 4: 1754-6834.
Article
Google Scholar
Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7: 36.
Article
Google Scholar
Fischer CR, Klein-Marcuschamer D, Stephanopoulos G: Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008, 10: 295-304.
Article
CAS
Google Scholar
Alsaker KV, Paredes C, Papoutsakis ET: Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 2010, 105: 1131-1147.
CAS
Google Scholar
Dunlop MJ: Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 2011, 4: 1754-6834.
Article
Google Scholar
Ezeji TC, Qureshi N, Blaschek HP: Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004, 4: 305-314.
Article
CAS
Google Scholar
Gray WD, Sova C: Relation of molecule size and structure to alcohol inhibition of glucose utilization by yeast. J Bacteriol 1956, 72: 349-356.
CAS
Google Scholar
Butanol toxicity in the butylic fermentation: Butanol toxicity in the butylic fermentation. Biotechnol Bioeng Symp 1981, 11: 567-579.
Google Scholar
Bowles LK, Ellefson WL: Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985, 50: 1165-1170.
CAS
Google Scholar
Hui FK, Barton PG: Mesomorphic behaviour of some phospholipids with aliphatic alcohols and other non-ionic substances. Biochim Biophys Acta 1973, 296: 510-517.
Article
CAS
Google Scholar
Ingram LO: Adaptation of membrane lipids to alcohols. J Bacteriol 1976, 125: 670-678.
CAS
Google Scholar
Paterson SJ, Butler KW, Huang P, Labelle J, Smith IC, Schneider H: The effects of alcohols on lipid bilayers: a spin label study. Biochim Biophys Acta 1972, 266: 597-602.
Article
CAS
Google Scholar
Sheetz MP, Singer SJ: Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 1974, 71: 4457-4461.
Article
CAS
Google Scholar
Vollherbst-Schneck K, Sands JA, Montenecourt BS: Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1984, 47: 193-194.
CAS
Google Scholar
Grisham CM, Barnett RE: The effects of long-chain alcohols on membrane lipids and the (Na++K+)-ATPase. Biochim Biophys Acta 1973, 311: 417-422.
Article
CAS
Google Scholar
Leao C, van Uden N: Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol Bioeng 1982, 24: 2601-2604.
Article
CAS
Google Scholar
Carlsen HN, Degn H, Lloyd D: Effects of alcohols on the respiration and fermentation of aerated suspensions of baker’s yeast. J Gen Microbiol 1991, 137: 2879-2883.
Article
CAS
Google Scholar
Iglesias R, Ferreras JM, Arias FJ, Munoz R, Girbes T: Effect of continued exposition to ethanol on activity of the ammonium and fructose transport systems in Saccharomyces cerevisiae var. ellipsoideus. Biotechnol Bioeng 1991, 37: 389-391.
Article
CAS
Google Scholar
Graca Da Silveira M, Vitoria San Romao M, Loureiro-Dias MC, Rombouts FM, Abee T: Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 2002, 68: 6087-6093.
Article
CAS
Google Scholar
Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB: A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. EMBO J 2001, 20: 6464-6474.
Article
CAS
Google Scholar
Albers E, Larsson C: A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 2009, 36: 1085-1091.
Article
CAS
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000, 11: 4241-4257.
Article
CAS
Google Scholar
Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L: Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1996, 271: 13875-13881.
Article
CAS
Google Scholar
Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA: The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 2010, 109: 13-24.
CAS
Google Scholar
Inoue Y, Tsujimoto Y, Kimura A: Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 1998, 273: 2977-2983.
Article
CAS
Google Scholar
Zingaro KA, Terry Papoutsakis E: GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2013, 15: 196-205.
Article
CAS
Google Scholar
Wagner I, Arlt H, van Dyck L, Langer T, Neupert W: Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 1994, 13: 5135-5145.
CAS
Google Scholar
Specht S, Miller SBM, Mogk A, Bukau B: Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 2011, 195: 617-629.
Article
CAS
Google Scholar
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF: Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 1998, 8: 464-478.
CAS
Google Scholar
Kim TY, Ha CW, Huh WK: Differential subcellular localization of ribosomal protein L7 paralogs in Saccharomyces cerevisiae. Mol Cells 2009, 27: 539-546.
Article
CAS
Google Scholar
Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 2009, 9: 32-44.
Article
CAS
Google Scholar
Aguilera A, Benitez T: Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol 1985, 142: 389-392.
Article
CAS
Google Scholar
Gonzalez-Ramos D, van den Broek M, van Maris AJ, Pronk JT, Daran JM: Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 2013, 6: 1754-6834.
Article
Google Scholar
Blom J, De Mattos MJT, Grivell LA: Redirection of the Respiro-Fermentative Flux Distribution in Saccharomyces cerevisiae by Overexpression of the Transcription Factor Hap4p. Appl Environ Microbiol 2000, 66: 1970-1973.
Article
CAS
Google Scholar
Baer SH, Blaschek HP, Smith TL: Effect of Butanol Challenge and Temperature on Lipid Composition and Membrane Fluidity of Butanol-Tolerant Clostridium acetobutylicum. Appl Environ Microbiol 1987, 53: 2854-2861.
CAS
Google Scholar
Dickey AN, Yim WS, Faller R: Using ergosterol to mitigate the deleterious effects of ethanol on bilayer structure. J Phys Chem B 2009, 113: 2388-2397.
Article
CAS
Google Scholar
Huffer S, Clark ME, Ning JC, Blanch HW, Clark DS: Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Appl Environ Microbiol 2011, 77: 6400-6408.
Article
CAS
Google Scholar
Khoomrung S, Chumnanpuen P, Jansa-Ard S, Ståhlman M, Nookaew I, Boren J, Nielsen JB: Rapid Quantification of Yeast Lipid using Microwave-assisted Total Lipid Extraction and HPLC-CAD. Anal Chem 2013, 85: 4912-4919.
Article
CAS
Google Scholar
Larsson C, Nilsson A, Blomberg A, Gustafsson L: Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 1997, 179: 7243-7250.
CAS
Google Scholar
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L: The two isoenzymes for yeast NAD + −dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997, 16: 2179-2187.
Article
CAS
Google Scholar
Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nat Meth 2009, 6: 359-362.
Article
CAS
Google Scholar