Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311: 484-489. 10.1126/science.1114736
CAS
Google Scholar
Saxena RC, Adhikari DK, Goyal HB: Biomass-based energy fuel through biochemical routes: A review. Renew Sust Energ Rev 2009, 13: 156-167.
CAS
Google Scholar
Yang B, Wyman CE: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2008, 2: 26-40. 10.1002/bbb.49
CAS
Google Scholar
Pu Y, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ: Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol 2011, 91: 1525-1536. 10.1007/s00253-011-3350-z
CAS
Google Scholar
Pu Y, Zhang D, Singh PM, Ragauskas AJ: The new forestry biofuels sector. Biofuels Bioprod Biorefin 2008, 2: 58-73. 10.1002/bbb.48
CAS
Google Scholar
Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN: Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 2007, 108: 67-93.
CAS
Google Scholar
Lawoko M, Henriksson G, Gellerstedt G: Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 2005, 6: 3467-3473. 10.1021/bm058014q
CAS
Google Scholar
Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W: Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 2004, 3: 29-60.
CAS
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315: 804-807. 10.1126/science.1137016
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96: 673-686. 10.1016/j.biortech.2004.06.025
CAS
Google Scholar
Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN: Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 2009, 25: 333-339. 10.1002/btpr.142
CAS
Google Scholar
Davin LB, Lewis NG: Lignin primary structures and dirigent sites. Curr Opin Biotechnol 2005, 16: 407-415. 10.1016/j.copbio.2005.06.011
CAS
Google Scholar
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 2011, 108: 6300-6305. 10.1073/pnas.1009252108
CAS
Google Scholar
El Hage R, Chrusciel L, Desharnais L, Brosse N: Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 2010, 101: 9321-9329. 10.1016/j.biortech.2010.06.143
CAS
Google Scholar
Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J: A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 2007, 98: 3000-3011. 10.1016/j.biortech.2006.10.022
CAS
Google Scholar
Liu C, Wyman CE: Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 2005, 96: 1978-1985. 10.1016/j.biortech.2005.01.012
CAS
Google Scholar
Ishizawa C, Jeoh T, Adney W, Himmel M, Johnson D, Davis M: Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 2009, 16: 677-686. 10.1007/s10570-009-9313-1
CAS
Google Scholar
Kumar L, Chandra R, Chung PA, Saddler J: Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour Technol 2010, 101: 7827-7833. 10.1016/j.biortech.2010.05.023
CAS
Google Scholar
Kumar L, Chandra R, Chung PA, Saddler J: The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 2012, 103: 201-208. 10.1016/j.biortech.2011.09.091
CAS
Google Scholar
Ding SY, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 2012, 338: 1055-1060. 10.1126/science.1227491
CAS
Google Scholar
DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE: Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 2011, 4: 4332-4339. 10.1039/c1ee02112e
CAS
Google Scholar
Sannigrahi P, Ragauskas AJ, Miller SJ: Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in Loblolly pine. BioEnergy Res 2008, 1: 205-214. 10.1007/s12155-008-9021-y
Google Scholar
Samuel R, Pu Y, Raman B, Ragauskas AJ: Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl Biochem Biotechnol 2010, 162: 62-74. 10.1007/s12010-009-8749-y
CAS
Google Scholar
Cao S, Pu Y, Studer M, Wyman CL, Ragauskas AJ: Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances 2012, 2: 10925-10936. 10.1039/c2ra22045h
CAS
Google Scholar
Sannigrahi P, Kim DH, Jung S, Ragauskas AJ: Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 2011, 4: 1306-1310. 10.1039/c0ee00378f
CAS
Google Scholar
Hu F, Jung S, Ragauskas A: Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 2012, 117: 7-12.
CAS
Google Scholar
Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB: Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 2007, 23: 1333-1339. 10.1021/bp0702018
CAS
Google Scholar
Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107: 65-72. 10.1016/j.jbiotec.2003.09.011
CAS
Google Scholar
Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB: Visualizing lignin coalescence and migration through maize cell walls following thermochemical retreatment. Biotechnol Bioeng 2008, 101: 913-925. 10.1002/bit.21959
CAS
Google Scholar
Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE: Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Sheraton, New Orleans: 34th Symposium on Biotechnology for Fuels and Chemicals; 2012.
Google Scholar
Li JB, Henriksson G, Gellerstedt G: Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 2007, 98: 3061-3068. 10.1016/j.biortech.2006.10.018
CAS
Google Scholar
Kumar R, Mago G, Balan V, Wyman CE: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 2009, 100: 3948-3962. 10.1016/j.biortech.2009.01.075
CAS
Google Scholar
Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ: Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 2010, 101: 3106-3114. 10.1016/j.biortech.2009.12.044
CAS
Google Scholar
Leschinsky M, Zuckerstaetter G, Weber HK, Patt R, Sixta H: Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung 2008, 62: 653-658.
CAS
Google Scholar
Jung S, Foston M, Sullards MC, Ragauskas AJ: Surface characterization of dilute acid pretreated Populus deltoides by ToF-SIMS. Energy Fuel 2010, 24: 1347-1357. 10.1021/ef901062p
CAS
Google Scholar
Moxley G, Gaspar AR, Higgins D, Xu H: Structural changes of corn stover lignin during acid pretreatment. J Ind Microbiol Biotechnol 2012,39(9):1289-1299. 10.1007/s10295-012-1131-z
CAS
Google Scholar
Pu Y, Cao S, Studer M, Ragauskas AJ, Wyman CE: Chemical characterization of poplar after hot water pretreatment. Clearwater Beach, Florida: 32th Symposium on Biotechnology for Fuels and Chemicals; 2010.
Google Scholar
Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas AJ, Dixon RA, Davis M: Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 2010, 285: 38961-38968. 10.1074/jbc.M110.137315
CAS
Google Scholar
Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP: Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 2006, 130: 427-435. 10.1385/ABAB:130:1:427
Google Scholar
Chang VS, Holtzapple MT: Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 2000, 84–6: 5-37.
Google Scholar
Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA: Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenergy Res 2009, 2: 153-164. 10.1007/s12155-009-9041-2
Google Scholar
Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, et al.: Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 2010, 154: 874-886. 10.1104/pp.110.159269
CAS
Google Scholar
Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25: 759-761. 10.1038/nbt1316
CAS
Google Scholar
Pu Y, Chen F, Ziebell A, Davison BH, Ragauskas AJ: NMR characterization of C3H and HCT down-regulated alfalfa lignin. Bioenerg Res 2009, 2: 198-208. 10.1007/s12155-009-9056-8
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG, Wang H, Jackson L, Tang Y, Stewart CN, Chen F, Dixon RA: Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 2012, 193: 121-136. 10.1111/j.1469-8137.2011.03922.x
CAS
Google Scholar
Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. Ann Rev Plant Biol 2003, 54: 519-546. 10.1146/annurev.arplant.54.031902.134938
CAS
Google Scholar
Chen L, Auh C-K, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang Z-Y: Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 2003, 1: 437-449. 10.1046/j.1467-7652.2003.00040.x
CAS
Google Scholar
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z-Y: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 2011, 108: 3803-3808. 10.1073/pnas.1100310108
CAS
Google Scholar
Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W: Metabolic engineering of novel lignin in biomass crops. New Phytol 2012, 196: 978-1000. 10.1111/j.1469-8137.2012.04337.x
CAS
Google Scholar
Ralph J, Kim H, Lu F, Grabber JH, Leplé J-C, Berrio-Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C: Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 2008, 53: 368-379.
CAS
Google Scholar
Elumalai S, Tobimatsu Y, Grabber JH, Pan X, Ralph J: Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls. Biotechnol Biofuels 2012, 5: 59. 10.1186/1754-6834-5-59
CAS
Google Scholar
Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Çetinkol ÖP, et al.: Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 2012, 10: 609-620. 10.1111/j.1467-7652.2012.00692.x
CAS
Google Scholar
Garrote G, Kabel MA, Schols HA, Falque E, Dominguez H, Parajo JC: Effects of Eucalyptus globulus wood autohydrolysis conditions on the reaction products. J Agri Food Chem 2007, 55: 9006-9013. 10.1021/jf0719510
CAS
Google Scholar
Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC: Hydrothermal processing of rice husks: effects of severity on product distribution. J Chem Technol Biotechnol 2008, 83: 965-972. 10.1002/jctb.1896
CAS
Google Scholar
Kumar L, Chandra R, Saddler J: Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 2011, 108: 2300-2311. 10.1002/bit.23185
CAS
Google Scholar
Kumar L, Tooyserkani Z, Sokhansanj S, Saddler JN: Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars? Bioresour Technol 2012, 121: 190-198.
CAS
Google Scholar
Marzialetti T, Olarte MBV, Sievers C, Hoskins TJC, Agrawal PK, Jones CW: Dilute acid hydrolysis of Loblolly pine: A comprehensive approach. Ind Eng Chem Res 2008, 47: 7131-7140. 10.1021/ie800455f
CAS
Google Scholar
Sun Y, Cheng JJ: Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 2005, 96: 1599-1606. 10.1016/j.biortech.2004.12.022
CAS
Google Scholar
Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA: Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 2007, 98: 2034-2042. 10.1016/j.biortech.2006.08.006
CAS
Google Scholar
Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT: Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 2010, 101: 4446-4455. 10.1016/j.biortech.2010.01.047
CAS
Google Scholar
Chen XW, Lawoko M, van Heiningen A: Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 2010,101(20):7812-7819. 10.1016/j.biortech.2010.05.006
CAS
Google Scholar
Hu F, Jung S, Ragauskas A: Impact of Pseudolignin versus Dilute Acid-Pretreated Lignin on Enzymatic Hydrolysis of Cellulose. ACS Sus Chem Eng 2012, 1: 62-65.
Google Scholar
Liu CG, Wyman CE: The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 2003, 42: 5409-5416. 10.1021/ie030458k
CAS
Google Scholar
Liu CG, Wyman CE: The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 2004, 43: 2781-2788. 10.1021/ie030754x
CAS
Google Scholar
Yang B, Wyman CE: Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresour Technol 2008, 99: 5756-5762. 10.1016/j.biortech.2007.10.054
CAS
Google Scholar
Yang B, Wyman CE: Dilute acid and autohydrolysis pretreatment. Meth Mol Biol 2009, 581: 103-114. 10.1007/978-1-60761-214-8_8
CAS
Google Scholar
Zhang J, Tang M, Viikari L: Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 2012, 121C: 8-12.
Google Scholar
Ishizawa CI, Davis MF, Schell DF, Johnson DK: Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 2007, 55: 2575-2581. 10.1021/jf062131a
CAS
Google Scholar
Kumar R, Wyman CE: Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 2009, 102: 457-467. 10.1002/bit.22068
CAS
Google Scholar
Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 2010,101(24):9624-9630. 10.1016/j.biortech.2010.06.137
CAS
Google Scholar
Qing Q, Wyman CE: Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 2011, 4: 18-29. 10.1186/1754-6834-4-18
CAS
Google Scholar
Chen X, Shekiro J, Franden MA, Wang W, Zhang M, Kuhn E, Johnson DK, Tucker MP: The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol Biofuels 2012, 5: 8-21. 10.1186/1754-6834-5-8
CAS
Google Scholar
Pan XJ, Gilkes N, Saddler JN: Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 2006, 60: 398-401.
CAS
Google Scholar
Selig MJ, Adney WS, Himmel ME, Decker SR: The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 2009, 16: 711-722. 10.1007/s10570-009-9322-0
CAS
Google Scholar
Chen XW, Lawoko M, van Heiningen A: Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 2010, 101: 7812-7819. 10.1016/j.biortech.2010.05.006
CAS
Google Scholar
Chen X, Shekiro J, Elander R, Tucker M: Improved xylan hydrolysis of corn stover by deacetylation with high solids dilute acid pretreatment. Ind Eng Chem Res 2012, 51: 70-76. 10.1021/ie201493g
CAS
Google Scholar
Klemm D, Heublein B, Fink HP, Bohn A: Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 2005, 44: 3358-3393. 10.1002/anie.200460587
CAS
Google Scholar
Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K: On the determination of crystallinity and cellulose content in plant fibers. Cellulose 2005,12(6):563-576. 10.1007/s10570-005-9001-8
CAS
Google Scholar
Atalla RH, VanderHart DL: Native cellulose: a composite of two distinct crystalline forms. Science 1984,223(4633):283-285. 10.1126/science.223.4633.283
CAS
Google Scholar
Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T: CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 1999,15(1):31-40. 10.1016/S0926-2040(99)00044-2
CAS
Google Scholar
Stephens CH, Whitmore PM, Morris HR, Bier ME: Hydrolysis of the amorphous cellulose in cotton-based paper. Biomacromolecules 2008, 9: 1093-1099. 10.1021/bm800049w
CAS
Google Scholar
Foston M, Ragauskas AJ: Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass Bioenerg 2010, 34: 1885-1895. 10.1016/j.biombioe.2010.07.023
CAS
Google Scholar
Yu Y, Wu HW: Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 2010, 49: 3902-3909. 10.1021/ie901925g
CAS
Google Scholar
Hsu TC, Guo GL, Chen WH, Hwang WS: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technol 2010, 101: 4907-4913. 10.1016/j.biortech.2009.10.009
CAS
Google Scholar
Samuel R, Pu Y, Foston M, Ragauskas AJ: Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 2010,1(1):85-90. 10.4155/bfs.09.17
CAS
Google Scholar
Xiao LP, Sun ZJ, Shi ZJ, Xu F, Sun RC: Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources 2011,6(2):1576-1598.
CAS
Google Scholar
Lee JM, Jameel H, Venditti RA: A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol 2010, 101: 5449-5458. 10.1016/j.biortech.2010.02.055
CAS
Google Scholar
Segal L, Creely JJ, Martin AE Jr, Conrad CM: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 1959, 29: 786-794. 10.1177/004051755902901003
CAS
Google Scholar
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010, 3: 10. 10.1186/1754-6834-3-10
Google Scholar
Chundawat SPS, Beckham GT, Himmel ME, Dale BE: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2011, 2: 121-145. 10.1146/annurev-chembioeng-061010-114205
CAS
Google Scholar
Håkansson H, Ahlgren P, Germgård U: The degree of disorder in hardwood kraft pulps studied by means of LODP. Cellulose 2005, 12: 327-335. 10.1007/s10570-004-5840-y
Google Scholar
Battista OA: Hydrolysis and crystallization of cellulose. Ind Eng Chem Res 1950,42(3):502-507. 10.1021/ie50483a029
CAS
Google Scholar
Battista OA, Coppick S: Hydrolysis of native versus regenerated cellulose structures. Test Res J 1947,17(8):419-422.
CAS
Google Scholar
Nickerson RF, Habrle JA: Cellulose intercrystalline structure: study by hydrolytic methods. Ind Eng Chem Res 1947,39(11):1507-1512. 10.1021/ie50455a024
CAS
Google Scholar
Huang F, Ragauskas AJ: Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Ind Biotechnol 2012,8(1):22-30. 10.1089/ind.2011.0018
CAS
Google Scholar
Jahan MS, Muna SP: Studies on the macromolecular components of nonwood available in Bangladesh. Ind Crop Prod 2009, 30: 344-350. 10.1016/j.indcrop.2009.06.006
CAS
Google Scholar
Hubbell CA, Ragauskas AJ: Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technol 2010,101(19):7410-7415. 10.1016/j.biortech.2010.04.029
CAS
Google Scholar
Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ: Effect of ethanol organosolv pre-treatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 2010, 49: 1467-1472. 10.1021/ie900683q
CAS
Google Scholar
Martínez JM, Reguant J, Montero MÁ, Montané D, Salvadó J, Farriol X: Hydrolytic pre-treatment of softwood and almond shells, Degree of polymerization and enzymatic digestibility of the cellulose fraction. Ind Eng Chem Res 2007, 36: 688-696.
Google Scholar
Pan X, Xie D, Kang KY, Yoon SL, Saddler JN: Effect of organosolv ethanol pre-treatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 2007, 136–140: 367-377.
Google Scholar
Pan X, Xie D, Yu RW, Saddler JN: The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 2008, 101: 39-48. 10.1002/bit.21883
CAS
Google Scholar
Grethlein HE: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 1985,3(2):155-160. 10.1038/nbt0285-155
CAS
Google Scholar
Yang B, Wyman CE: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 2006, 94: 611-617. 10.1002/bit.20750
CAS
Google Scholar
Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR: Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 2007, 97: 265-278. 10.1002/bit.21298
CAS
Google Scholar
Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM: Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (part 2). Biotechnol Bioeng 2012, 109: 398-404. 10.1002/bit.23335
CAS
Google Scholar
Hsu TC, Guo GL, Chen WH, Hwang WS: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 2010, 101: 4907-4913. 10.1016/j.biortech.2009.10.009
CAS
Google Scholar
Foston M, Ragauskas AJ: Changes in the structure of the cellulose fiber wall during dilute acid pretreatment in Populus studied by 1H and 2H NMR. Energy Fuel 2010, 24: 5677-5685. 10.1021/ef100882t
CAS
Google Scholar
Chen W-H, Tu Y-J, Sheen H-K: Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 2011, 88: 2726-2734. 10.1016/j.apenergy.2011.02.027
CAS
Google Scholar
Yu C-T, Chen W-H, Men L-C, Hwang W-S: Microscopic structure features changes of rice straw treated by boiled acid solution. Ind Crops Prod 2009, 29: 308-315. 10.1016/j.indcrop.2008.06.005
CAS
Google Scholar
Chen W-H, Tu Y-J, Sheen H-K: Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int J Energy Res 2010, 34: 265-274. 10.1002/er.1566
CAS
Google Scholar