Rubin EM: Genomics of cellulosic biofuels. Nature 2008, 454: 841-845. 10.1038/nature07190
Article
CAS
Google Scholar
Kaylen M, Van Dyne DL, Choi YS, Blasé M: Economic feasibility of producing ethanol from lignocellulosic feedstocks. Biores Technol 2000, 72: 19-32. 10.1016/S0960-8524(99)00091-7
Article
CAS
Google Scholar
Lee J: Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 1997, 56: 1-24. 10.1016/S0168-1656(97)00073-4
Article
CAS
Google Scholar
Wheals AE, Basso LC, Alves DMG, Amorim HV: Fuel ethanol after 25 years. TIBTECH 1999, 17: 482-487. 10.1016/S0167-7799(99)01384-0
Article
CAS
Google Scholar
Mitchell WJ: Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 1998, 39: 31-130.
Article
CAS
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315: 804-807. 10.1126/science.1137016
Article
CAS
Google Scholar
Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, et al.: Genome sequence of the cellulolytic gliding bacterium cytophaga hutchinsonii. Appl Environ Microbiol 2007, 73: 3536-3546. 10.1128/AEM.00225-07
Article
CAS
Google Scholar
Brumm P, Mead D, Boyum J, Drinkwater C, Gowda K, Stevenson D, Weimer P: Functional annotation of fibrobacter succinogenes S85 carbohydrate active enzymes. Appl Biochem Biotechnol 2010. 10.1007/s12010-010-9070-5
Google Scholar
Morrison M, Pope PB, Denman SE, McSweeney CS: Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotech 2009, 20: 358-363. 10.1016/j.copbio.2009.05.004
Article
CAS
Google Scholar
Brumm P, Hermanson S, Hochstein B, Boyum J, Hermersmann N, Gowda K, Mead D: Mining Dictyoglomus turgidum for enzymatically active carbohydrases. Appl Biochem Biotechnol 2010. 10.1007/s12010-010-9029-6
Google Scholar
Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different to other herbivores. Proc Natl Acad Sci USA 2010, 107: 14793-14798. 10.1073/pnas.1005297107
Article
CAS
Google Scholar
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, et al.: Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007, 450: 560-565. 10.1038/nature06269
Article
CAS
Google Scholar
Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, et al.: Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 1948, 2009: 106.
Google Scholar
Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, et al.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331: 463-467. 10.1126/science.1200387
Article
CAS
Google Scholar
Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH: Metagenomics of the svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 2012. 10.1371/journal.pone.0038571
Google Scholar
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012, 40: D13-D25. 10.1093/nar/gkr1184
Article
CAS
Google Scholar
Beerenwinkel N, Dumer M, Oette M, Korn K, Hoffmann D, Kaiser R, Lengauer T, Selbig J, Walter H: Geno2Pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 2003, 31: 3850-3855. 10.1093/nar/gkg575
Article
CAS
Google Scholar
Yosef N, Gramm J, Wang Q-F, Noble WS, Karp RM, Sharan R: Prediction of phenotype information from genotype data. Commun Inf Syst 2010, 10: 99-114.
Google Scholar
Someya S, Kakuta M, Morita M, Sumikoshi K, Cao W, Ge Z, Hirose O, Nakamura S, Terada T, Shimizu K: Prediction of carbohydrate-binding proteins from sequences using support vector machines. Adv Bioinformatics 2010. 10.1155/2010/289301
Google Scholar
Cortes C, Vapnik V: Support-vector networks. Mach Learn 1995, 20: 273-297.
Google Scholar
Boser B, Guyon I, Vapnik V: A training algorithm for optimal margin classifiers. In Fifth Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACM; 1992:144-152.
Chapter
Google Scholar
Chertkov O, Sikorski J, Nolan M, Lapidus A, Lucas S, Del Rio TG, Tice H, Cheng J-F, Goodwin L, Pitluck S, et al.: Complete genome sequence of Thermomonospora curvata type strain (B9). Stand Genomic Sci 2011, 4: 13-22. 10.4056/sigs.1453580
Article
CAS
Google Scholar
Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N: Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS One 2012, 7: e39331. 10.1371/journal.pone.0039331
Article
CAS
Google Scholar
Aspeborg H, Coutinho PM, Wang Y, Brumer H 3rd, Henrissat B: Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012, 12: 186. 10.1186/1471-2148-12-186
Article
CAS
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 15: 769-781.
Article
Google Scholar
Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, et al.: The complete genome sequence of fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011, 6: e18814. 10.1371/journal.pone.0018814
Article
CAS
Google Scholar
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P: SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 2000, 28: 231-234. 10.1093/nar/28.1.231
Article
CAS
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40: D290-D301. 10.1093/nar/gkr1065
Article
CAS
Google Scholar
Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, White O: TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 2001, 29: 41-43. 10.1093/nar/29.1.41
Article
CAS
Google Scholar
Wilson DB: Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 2008, 1125: 289-297. 10.1196/annals.1419.026
Article
CAS
Google Scholar
Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci USA 2010. 10.1073/pnas.1003584107
Google Scholar
DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 2008, 190: 5455-5463. 10.1128/JB.01701-07
Article
CAS
Google Scholar
Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM: Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40 T. J Bacteriol 2006, 188: 3849-3861. 10.1128/JB.01348-05
Article
CAS
Google Scholar
Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 2010, 107: 15293-15298. 10.1073/pnas.1005732107
Article
Google Scholar
Duan CJ, Feng JX: Mining metagenomes for novel cellulase genes. Biotechnol Lett 2010, 32: 1765-1775. 10.1007/s10529-010-0356-z
Article
CAS
Google Scholar
Wilson DB: Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 2009, 16: 723-727. 10.1007/s10570-009-9326-9
Article
CAS
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37: D233-D238. 10.1093/nar/gkn663
Article
CAS
Google Scholar
Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, et al.: IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 2012, 40: D123-D129. 10.1093/nar/gkr975
Article
CAS
Google Scholar
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, et al.: IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012, 40: D115-D122. 10.1093/nar/gkr1044
Article
CAS
Google Scholar
Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39: W29-W37. 10.1093/nar/gkr367
Article
CAS
Google Scholar
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012. 10.1093/nar/gks479
Google Scholar
Yaun G-X, Chang K-W, Hsieh C-J, Lin C-J: A comparison of optimization methods for large-scale L1-regularized linear classification. J Mach Learn Res 2010, 11: 3183-3234.
Google Scholar
Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ: LIBLINEAR: a library for large linear classification. J Mach Learn Res 2008, 9: 1871-1874.
Google Scholar
Ruschhaupt M, Huber W, Poustka A, Mansmann U: A compendium to ensure computational reproducibility in high-dimensional classification tasks. Stat Appl Genet Mol Biol 2004, 3: Article 37.
Google Scholar