San KY, Bennett GN, Berríos-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K: Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 2002, 4: 182-192. 10.1006/mben.2001.0220
Article
CAS
Google Scholar
Liu LM, Chen J: Cofactor engineering enhances the physiological function of an industrial strain. In Progress in Molecular and Environmental Bioengineering–From Analysis and Modeling to Technology Applications. Edited by: Carpi A. InTech Open Access Publisher, Rijeka; 2011:427-444.
Google Scholar
Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY: Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2011, 30: 989-1000.
Article
Google Scholar
de Felipe FL, Kleerebezem M, de Vos WM, Hugenholtz J: Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 1998, 180: 3804-3808.
CAS
Google Scholar
Foster JW, Park YK, Penfound T, Fenger T, Spector MP: Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J Bacteriol 1990, 172: 4187-4196.
CAS
Google Scholar
Heux S, Cachon R, Dequin S: Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 2006, 8: 303-314. 10.1016/j.ymben.2005.12.003
Article
CAS
Google Scholar
Berríos-Rivera SJ, San KY, Bennett GN: The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. J Ind Microbiol Biotechnol 2003, 30: 34-40.
Article
Google Scholar
Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S: Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 2010, 85: 1751-1758. 10.1007/s00253-009-2222-2
Article
CAS
Google Scholar
Zhang YP, Li Y, Du CY, Liu M, Cao ZA: Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 2006, 8: 578-586. 10.1016/j.ymben.2006.05.008
Article
CAS
Google Scholar
Berríos-Rivera SJ, Bennett GN, San KY: Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 2002, 4: 217-229. 10.1006/mben.2002.0227
Article
Google Scholar
Zhang YP, Huang ZH, Du CY, Li Y, Cao ZA: Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 2009, 11: 101-106. 10.1016/j.ymben.2008.11.001
Article
Google Scholar
Berríos-Rivera SJ, San KY, Bennett GN: The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng 2002, 4: 238-247. 10.1006/mben.2002.0229
Article
Google Scholar
Liu LM, Li Y, Shi ZP, Du GC, Chen J: Enhancement of pyruvate productivity in Torulopsis glabrata: Increase of NAD+ availability. J Biotechnol 2006, 126: 173-185. 10.1016/j.jbiotec.2006.04.014
Article
CAS
Google Scholar
Sánchez AM, Bennett GN, San KY: Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol 2005, 117: 395-405. 10.1016/j.jbiotec.2005.02.006
Article
Google Scholar
Werpy T, Petersen G: Top value added chemicals from biomass, Volume 1: results of screening for potential candidates from sugars and synthesis gas. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf
Xiao ZJ, Xu P: Acetoin metabolism in bacteria. Crit Rev Microbiol 2007, 33: 127-140. 10.1080/10408410701364604
Article
CAS
Google Scholar
Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Liu JR: Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 2012, 5: 88. 10.1186/1754-6834-5-88
Article
CAS
Google Scholar
Ji XJ, Huang H, Nie ZK, Qu L, Xu Q, Tsao GT: Fuels and chemicals from hemicellulose sugars. Adv Biochem Eng Biotechnol 2012, 128: 199-224.
CAS
Google Scholar
Liu YF, Zhang SL, Yong YC, Ji ZX, Ma X, Xu ZH, Chen SW: Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 2011, 46: 390-394. 10.1016/j.procbio.2010.07.024
Article
CAS
Google Scholar
Xu P, Xiao Z, Du Y, Wei Z: An acetoin high yield Bacillus pumilus strain. European Patent 2009, .
Google Scholar
Zhang X, Yang T, Lin Q, Xu M, Xia H, Xu Z, Li H, Rao Z: Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World J Microbiol Biotechnol 2011, 12: 2785-2790.
Article
Google Scholar
Ji XJ, Huang H, Ouyang PK: Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol Adv 2011, 29: 351-364. 10.1016/j.biotechadv.2011.01.007
Article
CAS
Google Scholar
Johansen L, Bryn K, Störmer FC: Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 1975, 123: 1124-1130.
CAS
Google Scholar
Afschar AS, Bellgardt KH, Rossell CE, Czok A, Schaller K: The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 1991, 34: 582-585. 10.1007/BF00167903
Article
CAS
Google Scholar
Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S: Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 2009, 100: 3410-3414. 10.1016/j.biortech.2009.02.031
Article
CAS
Google Scholar
Nie ZK, Ji XJ, Huang H, Du J, Li ZY, Qu L, Zhang Q, Ouyang PK: An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca. Appl Biochem Biotechnol 2011, 163: 946-953. 10.1007/s12010-010-9098-6
Article
CAS
Google Scholar
Qureshi N, Cheryan M: Production of 2,3-butanediol by Klebsiella oxytoca. Appl Microbiol Biotechnol 1989, 30: 440-443.
Article
CAS
Google Scholar
Li D, Dai JY, Xiu ZL: A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour Technol 2010, 101: 8342-8347. 10.1016/j.biortech.2010.06.041
Article
CAS
Google Scholar
Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, Tang HZ, Xu P: Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 2009, 82: 49-57. 10.1007/s00253-008-1732-7
Article
CAS
Google Scholar
Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P: Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin J Chem Eng 2006, 14: 132-136. 10.1016/S1004-9541(06)60050-5
Article
CAS
Google Scholar
Sun LH, Wang XD, Dai JY, Xiu ZL: Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 2009, 82: 847-852. 10.1007/s00253-008-1823-5
Article
CAS
Google Scholar
Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P: Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 2010, 87: 965-970. 10.1007/s00253-010-2557-8
Article
CAS
Google Scholar
Hou J, Lages NF, Oldiges M, Vemuri GN: Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 2009, 11: 253-261. 10.1016/j.ymben.2009.05.001
Article
CAS
Google Scholar
Vemuri G, Eiteman M, McEwen J, Olsson L, Nielsen J: Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2007, 104: 2402-2407. 10.1073/pnas.0607469104
Article
CAS
Google Scholar
Fournet-Fayard S, Joly B, Forestier C: Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods 1995, 24: 49-54. 10.1016/0167-7012(95)00053-4
Article
Google Scholar
Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK: Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 2011, 89: 1119-1125. 10.1007/s00253-010-2940-5
Article
CAS
Google Scholar
Zhu JG, Li S, Ji XJ, Huang H, Hu N: Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J Microbiol Biotechnol 2009, 25: 1217-1223. 10.1007/s11274-009-0005-7
Article
CAS
Google Scholar
Auzat I, Chapuy-Regaud S, Bras GL, Santos DD, Ogunniyi AD, Thomas IL, Garel JR, Paton JC, Trombe MC: The NADH oxidase of Streptococcus pneumoniae: its involvement incompetence and virulence. Mol Microbiol 1999, 34: 1018-1028. 10.1046/j.1365-2958.1999.01663.x
Article
CAS
Google Scholar
Kleiner D, Paul W, Merrick MJ: Construction of multicopy expreesion vectors for regulated overproduction of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol 1988, 134: 1779-1784.
CAS
Google Scholar
Joseph S, David WR: Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor Laboratory Press, New York; 2001.
Google Scholar
de Felipe FL, Hugenholtz J: Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. Intern Dairy J 2001, 11: 37-44. 10.1016/S0958-6946(01)00031-0
Article
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3
Article
CAS
Google Scholar
Lilius EM, Multanen VM, Toivonen V: Quantitative extraction and estimation of intracellular nicotinamid dinucleotides in Escherichia coli. Anal Biochem 1979, 99: 22-27. 10.1016/0003-2697(79)90039-3
Article
CAS
Google Scholar
Bernowsky C, Swan M: An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 1973, 53: 452-458. 10.1016/0003-2697(73)90094-8
Article
Google Scholar