Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G: Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 2006, 24: 549-556. 10.1016/j.tibtech.2006.10.004
CAS
Google Scholar
Brown LR: World on the edge: How to prevent environmental and economic collapse. New York: WW Norton & Company, Inc.; 2011.
Google Scholar
Youngs H, Somerville C: Growing better biofuel crops. Scientist 2012. http://the-scientist.com/2012/07/01/growing-better-biofuel-crops/
Google Scholar
Nageswara-Rao M, Kwit C, Stewart CN Jr: Grass to solve global fuel crisis. BioSpectrum Asia 2012. http://www.biospectrumasia.com/biospectrum/opinion/3439/grass-solve-global-petrol-scarcity
Google Scholar
Kole C, Joshi CP, Shonnard DR: Handbook of Bioenergy Crop Plants. Boca Raton, London, New York: CRC Press, Taylor & Francis Group; 2012.
Google Scholar
Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr: Plants to power: bioenergy to fuel the future. Trends Plant Sci 2008, 13: 421-429. 10.1016/j.tplants.2008.06.001
CAS
Google Scholar
Herve G, Agneta F, Yves D: Biofuels and world agricultural markets: outlook for 2020 and 2050. In Economic Effects of Biofuel Production. Edited by: Bernardes MAS. Crotia: InTech Publishers; 2011:129-162.
Google Scholar
Cai X, Zhang X, Wang D: Land availability for biofuel production. Environ Sci Technol 2011, 45: 334-339. 10.1021/es103338e
CAS
Google Scholar
Abramson M, Shoseyov O, Shani Z: Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 2010, 178: 61-72. 10.1016/j.plantsci.2009.11.003
CAS
Google Scholar
Kausch AP, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Watrud LS, Stewart CN Jr: Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels 2010, 1: 163-176.
CAS
Google Scholar
McLaughlin SB, Kszos LA: Development of switchgrass ( Panicum virgatum ) as a bioenergy feedstock in the United States. Biomass Bioenerg 2005, 28: 515-535. 10.1016/j.biombioe.2004.05.006
Google Scholar
Wright L, Turhollow A: Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass Bioenerg 2010, 34: 851-868. 10.1016/j.biombioe.2010.01.030
Google Scholar
Moser LE, Vogel KP: Switchgrass, big bluestem, and indiangrass. In Forages. Volume 1. An Introduction to Grassland Agriculture. Edited by: Barnes RF, Miller DA, Nelson CJ. Ames: Iowa State University Press; 1995:409-420.
Google Scholar
Vogel KP: Switchgrass. In Warm-season (C4) grasses. Agronomy Monograph 45. Edited by: Moser LE, Burson BL, Sollenberger LE. Madison: ASA, CSSA, and SSSA; 2004:561-588.
Google Scholar
Parrish DJ, Fike JH: The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 2005, 24: 423-459. 10.1080/07352680500316433
Google Scholar
Porter CL Jr: An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 1966, 47: 980-992. 10.2307/1935646
Google Scholar
Narasimhamoorty B, Saha MC, Swaller T, Bouton JH: Genetic diversity in switchgrass collections assessed by EST-SSR markers. BioEnerg Res 2008, 1: 136-146. 10.1007/s12155-008-9011-0
Google Scholar
McLaughlin SB, Bouton J, Bransby D, Conger B, Ocumpaugh W, Parrish D, Taliaferro C, Vogel K, Wullschleger S: Developing switchgrass as a bioenergy feedstock. In Perspectives on New Crops and New Uses. Edited by: Janick J. Alexandria: ASHS Press; 1999:282-299.
Google Scholar
Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M: Large scale production, harvest and logistics of switchgrass ( Panicum virgatum L.) - current technology and envisioning a mature technology. Biofuels Bioprod Bioref 2009, 3: 124-141. 10.1002/bbb.129
CAS
Google Scholar
Todd J, Wu YQ, Wang Z, Samuels T: Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms. Genet Mol Res 2011, 10: 2976-2986. 10.4238/2011.November.29.8
CAS
Google Scholar
Jager HI, Baskaran LM, Brandt CC, Davis EB, Gunderson CA, Wullschleger SD: Empirical geographic modeling of switchgrass yields in the United States. Global Change Biol Bioenerg 2010, 2: 248-257. 10.1111/j.1757-1707.2010.01059.x
Google Scholar
Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR: Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 2010, 102: 1158-1168. 10.2134/agronj2010.0087
Google Scholar
Schmer MR, Vogel KP, Mitchell RB, Perrin RK: Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 2008, 105: 464-469. 10.1073/pnas.0704767105
CAS
Google Scholar
Denchev PD, Conger BV: Plant regeneration from callus cultures of switchgrass. Crop Sci 1994, 34: 1623-1637. 10.2135/cropsci1994.0011183X003400060036x
Google Scholar
Dutta Gupta S, Conger BV: Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci 1999, 39: 243-247. 10.2135/cropsci1999.0011183X003900010037x
Google Scholar
Odjakova MK, Conger BV: The influence of osmotic pretreatment and inoculum age on the initiation and regenerability of switchgrass suspension cultures. In Vitro Cell Dev Biol Plant 1999, 35: 442-444. 10.1007/s11627-999-0065-2
Google Scholar
Burris JN, Mann DGJ, Joyce BL, Stewart CN Jr: An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass. BioEnergy Res 2009, 2: 267-274. 10.1007/s12155-009-9048-8
Google Scholar
Gurel S, Gurel E, Kaya Z: Establishment of cell suspension cultures and plant regeneration in sugar beet ( Beta vulgaris L.). Turk J Bot 2002, 26: 197-205.
Google Scholar
Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, Zhao B: Selection and characterization of a new switchgrass ( Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Scientia Hort 2011, 129: 854-861. 10.1016/j.scienta.2011.05.016
Google Scholar
Hall RD: The initiation and maintenance of plant cell suspension cultures. In Plant Tissue Culture Manual. Edited by: Lindsey K. Dordrecht: Kluwer Academic Publishers; 1991:A3:1–21.
Google Scholar
Mazarei M, Al-Ahmad H, Rudis MR, Joyce BL, Stewart CN Jr: Switchgrass ( Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application. Plant Sci 2011, 181: 712-715. 10.1016/j.plantsci.2010.12.010
CAS
Google Scholar
Su WW: Cell culture and regeneration of plant tissues. In Trangenic Plants and Crops. Edited by: Khachatourians GG, McHughen A, Scorza R, Nip W, Hui YH. New York: Taylor & Francis Publishers; 2002:151-176.
Google Scholar
Pernisova M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Frimi J, Zazimalova E, Hejatko J: Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 2009, 106: 3609-3614. 10.1073/pnas.0811539106
CAS
Google Scholar
Thomas E, Davey MR: From single cells to plants. London: Wykeham Publications; 1975.
Google Scholar
Denchev PD, Conger BV: In vitro culture of switchgrass: influence of 2,4-D and picloram in combination with benzyladenine on callus initiation and regeneration. Plant Cell Tiss Org Cult 1995, 40: 43-48. 10.1007/BF00041117
CAS
Google Scholar
Foulk SM: Tissue culture and recombination DNA technology: Developing protocols for potentially higher yielding switchgrass cultivars. MS thesis: The University of Tennessee, Department of Plant Sciences; 2008.
Google Scholar
Alexandrova KS, Denchev PD, Conger BV: Micropropagation of switchgrass by node culture. Crop Sci 1996, 36: 1709-1711. 10.2135/cropsci1996.0011183X003600060049x
CAS
Google Scholar
Dutta Gupta S, Conger BV: In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell Dev Biol Plant 1998, 34: 196-202. 10.1007/BF02822708
Google Scholar
Seo M, Takahara M, Takamizo T: Optimization of culture conditions for plant regeneration of Panicum spp. through somatic embryogenesis. Grassl Sci 2010, 56: 6-12. 10.1111/j.1744-697X.2009.00166.x
CAS
Google Scholar
Chen CH, Sargent WA, Lo PF, Boe AA: Plant regeneration and morphogenetic patterns in callus cultures derived from young inflorescences of switchgrass ( Panicum virgatum L.) [abstract]. In Proceedings of the VI Intern Cong Plant Tissue and Cell Cult. Edited by: Somers DA. MN: St. Paul; 1986:227.
Google Scholar
Alexandrova KS, Denchev PD, Conger BV: In vitro development of inflorescences from switchgrass nodal segments. Crop Sci 1996, 36: 175-178. 10.2135/cropsci1996.0011183X003600010031x
Google Scholar
Wang Z-Y, Ge Y: Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 2006, 42: 1-18.
Google Scholar
Himmel ME: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315: 804-807. 10.1126/science.1137016
CAS
Google Scholar
Gressel J: Transgenics are imperative for biofuel crops. Plant Sci 2008, 174: 246-263. 10.1016/j.plantsci.2007.11.009
CAS
Google Scholar
Rubin EM: Genomics of cellulosic biofuels. Nature 2008, 454: 841-845. 10.1038/nature07190
CAS
Google Scholar
Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV: Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 2001, 20: 48-54. 10.1007/s002990000274
CAS
Google Scholar
Somleva MN, Tomaszewski Z, Conger BV: Agrobacterium -mediated genetic transformation of switchgrass. Crop Sci 2002, 42: 2080-2087. 10.2135/cropsci2002.2080
CAS
Google Scholar
Somleva MN: Switchgrass ( Panicum virgatum L.). In Methods in Molecular Biology. Volume 344: Agrobacterium Protocols. Edited by: Wang K. Totowa: Humana Press Inc; 2006:65-74.
Google Scholar
Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang Z-Y: Agrobacterium -mediated transformation of switchgrass and inheritance of the transgenes. BioEnerg Res 2009, 2: 275-283. 10.1007/s12155-009-9049-7
Google Scholar
Li R, Qu R: High throughput Agrobacterium -mediated switchgrass transformation. Biomass Bioenerg 2010, 35: 1046-1054.
Google Scholar
Song G, Walworth A, Hancock JF: Factors influencing Agrobacterium -mediated transformation of switchgrass cultivars. Plant Cell Tiss Org Cult 2012, 108: 445-453. 10.1007/s11240-011-0056-y
CAS
Google Scholar
Burris JN MS thesis. In An improved tissue culture and transformation system for switchgrass (Panicum virgatum L.). University of Tennessee, Department of Plant Sciences; 2010.
Google Scholar
VanderGheynst JS, Guo H, Simmons CW: Response surface studies that elucidate the role of infiltration conditions on Agrobacterium tumefaciens -mediated transient transgene expression in harvested switchgrass ( Panicum virgatum ). Biomass Bioenerg 2008, 32: 372-379.
CAS
Google Scholar
Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J: A high-throughput transient gene expression system for switchgrass ( Panicum virgatum L. ) seedlings. Biotechnol Biofuels 2010, 3: 9. 10.1186/1754-6834-3-9
CAS
Google Scholar
Mazarei M, Al-Ahmad H, Rudis MR, Stewart CN Jr: Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnol J 2008, 3: 354-359. 10.1002/biot.200700189
CAS
Google Scholar
Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Chen F: Developmental control of lignifications in stems of lowland switchgrass variety ‘Alamo’ and the effects on saccharification efficiency. BioEnerg Res 2009, 2: 233-245. 10.1007/s12155-009-9058-6
Google Scholar
Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 1992, 18: 675-689. 10.1007/BF00020010
CAS
Google Scholar
McElroy D, Zhang W, Cao J, Wu R: Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 1990, 2: 163-171.
CAS
Google Scholar
Wang J, Jiang J, Oard JH: Structure, expression and promoter activity of two polyubiquitin genes from rice ( Oryza sativa L.). Plant Sci 2000, 156: 201-211. 10.1016/S0168-9452(00)00255-7
CAS
Google Scholar
Mann DGJ, King ZR, Liu W, Joyce BL, Percifield RJ, Hawkins JS, LaFayette PR, Artelt BJ, Burris JN, Mazarei M, Bennetzen JL, Parrott WA, Stewart CN Jr: Switchgrass ( Panicum virgatum L. ) ubiquitin gene ( PvUbi1 and PvUbi2 ) promoters for use in plant transformation. BMC Biotechnol 2011, 11: 74. 10.1186/1472-6750-11-74
CAS
Google Scholar
Peremarti A, Twyman R, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T: Promoter diversity in multigene transformation. Plant Mol Biol 2010, 73: 363-378. 10.1007/s11103-010-9628-1
CAS
Google Scholar
Mann DGJ, LaFayette PR, Abercombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Stewart CN Jr: Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass ( Panicum virgatum L.) and other monocot species. Plant Biotechnol J 2012, 10: 226-236. 10.1111/j.1467-7652.2011.00658.x
CAS
Google Scholar
Somleva M, Snell K, Beaulieu J, Peoples O, Garrison B, Patterson N: Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 2008, 6: 663-678. 10.1111/j.1467-7652.2008.00350.x
CAS
Google Scholar
Lynd LR: Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energ Evn 1996, 21: 403-465. 10.1146/annurev.energy.21.1.403
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 2005, 96: 673-686. 10.1016/j.biortech.2004.06.025
CAS
Google Scholar
Liu C, Sun C: The future crops for biofuels. In Economic Effects of Biofuel Production. Edited by: Bernardes MAS. Crotia: InTech Publishers; 2011:25-38.
Google Scholar
Joyce BL, Stewart CN Jr: Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products. Biotechnol Adv 2012, 30: 1011-1022.
CAS
Google Scholar
Xu B, Escamilla-Trevin˜o LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang YHP, Dixon RA, Zhao B: Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 2011, 192: 611-625. 10.1111/j.1469-8137.2011.03830.x
CAS
Google Scholar
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 2011, 108: 3803-3808. 10.1073/pnas.1100310108
CAS
Google Scholar
Li X, Weng J, Chapple C: Improvement of biomass through lignin modification. Plant J 2008, 54: 569-581. 10.1111/j.1365-313X.2008.03457.x
CAS
Google Scholar
Chen L, Auh CK, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang ZY: Improved forage digestibility of tall fescue ( Festuca arundinacea ) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 2003, 1: 437-449. 10.1046/j.1467-7652.2003.00040.x
CAS
Google Scholar
Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA: Improved sugar conversion and ethanol yield for forage sorghum ( Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnerg Res 2009, 2: 153-164. 10.1007/s12155-009-9041-2
Google Scholar
Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY: Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnerg Res 2011, 4: 153-164. 10.1007/s12155-010-9109-z
Google Scholar
Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM: Down-regulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 2011, 6: e16416. 10.1371/journal.pone.0016416
CAS
Google Scholar
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, Wang H, Jackson L, Tang Y, Stewart CN Jr, Chen F, Dixon RA: Functional characterization of the switchgrass ( Panicum virgatum ) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phyto 2012, 193: 121-136. 10.1111/j.1469-8137.2011.03922.x
CAS
Google Scholar
Casler MD: Switchgrass breeding, genetics and genomics. In Switchgrass, Green Energy and Technology. Edited by: Monti A. London: Springer-Verlag; 2012:29-53.
Google Scholar
Vogel KP, Jung HJG: Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 2001, 20: 15-49.
Google Scholar
Bouton J: Improvements of switchgrass as a bioenergy crop. In Genetic Improvement of Bioenergy Crops. Edited by: Vermerris W. Berlin Heidelberg: Springer; 2008:295-308.
Google Scholar
Jung HJG, Vogel KP: Lignification of switchgrass ( Panicum virgatum ) and big bluestem ( Andropogon gerardii ) plant-parts during maturation and its effect on fiber degradability. J Sci Food Agric 1992, 59: 169-176. 10.1002/jsfa.2740590206
CAS
Google Scholar
Carroll A, Somerville C: Cellulosic biofuels. Annu Rev Plant Biol 2009, 60: 165-182. 10.1146/annurev.arplant.043008.092125
CAS
Google Scholar
Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S: Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci USA 2011, 108: 17550-17555. 10.1073/pnas.1113971108
CAS
Google Scholar
Fu C, Sunkar R, Zhou C, Shen H, Zhang J, Matts J, Wolf J, Mann DGJ, Stewart CN Jr, Tang Y, Wang ZY: Overexpression of miR156 in switchgrass ( Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 2012, 10: 443-452. 10.1111/j.1467-7652.2011.00677.x
CAS
Google Scholar
Zhang B, Pan X, Cobb GP, Anderson TA: Plant microRNA: a small regulatory molecule with big impact. Dev Biol 2006, 289: 3-16. 10.1016/j.ydbio.2005.10.036
CAS
Google Scholar
Poethig RS: Phase change and the regulation of shoot morphogenesis in plants. Science 1990, 250: 923-930. 10.1126/science.250.4983.923
CAS
Google Scholar
Chuck G, Cigan AM, Saeteurn K, Hake S: The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 2007, 39: 544-549. 10.1038/ng2001
CAS
Google Scholar
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell 2002, 110: 513-520. 10.1016/S0092-8674(02)00863-2
CAS
Google Scholar
Sun G, Stewart CN Jr, Xiao P, Zhang B: MicroRNA expression analysis in the cellulosic biofuel crop switchgrass ( Panicum virgatum ) under abiotic stress. PLoS One 2012, 7: e32017. 10.1371/journal.pone.0032017
CAS
Google Scholar
Eriksson ME, Israelsson M, Olsson O, Moritiz T: Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 2000, 18: 784-788. 10.1038/77355
CAS
Google Scholar
Casler MD, Stendal CA, Kapich L, Vogel KP: Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 2007, 47: 2261-2273. 10.2135/cropsci2006.12.0797
CAS
Google Scholar
Cortese LM, Honig J, Miller C, Bonos SA: Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenerg Res 2010, 3: 262-271. 10.1007/s12155-010-9078-2
Google Scholar
Gunter LE, Tuskan GA, Wullschleger SD: Diversity among populations of switchgrass based on RAPD markers. Crop Sci 1996, 36: 1017-1022. 10.2135/cropsci1996.0011183X003600040034x
Google Scholar
Missaoui AM, Paterson AH, Bouton JH: Molecular markers for the classification of switchgrass ( Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 2006, 53: 1291-1302. 10.1007/s10722-005-3878-9
CAS
Google Scholar
Nageswara-Rao M, Stewart CN Jr, Kwit C: Genetic diversity and structure of natural and cultivated switchgrass ( Panicum virgatum L.) populations. Genet Resour Crop Evol 2013, 60: 1057-1068. 10.1007/s10722-012-9903-x
Google Scholar
Wang YW, Samuels TD, Wu YQ: Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet 2011, 122: 677-686. 10.1007/s00122-010-1477-4
CAS
Google Scholar
Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD: Hierarchical classification of switchgrass using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 2011, 122: 805-817. 10.1007/s00122-010-1488-1
CAS
Google Scholar
Casler MD, Tobias CM, Kaeppler SM, Buell CR, Wang Z-Y, Cao P, Schmutz J, Ronald P: The switchgrass genome: tools and strategies. The Plant Genome 2011, 4: 273-282. 10.3835/plantgenome2011.10.0026
CAS
Google Scholar
Liu L, Wu Y, Wang Y, Samuels T: A high-density simple sequence repeat-based genetic linkage map of switchgrass. Genes Genom Genet 2012, 2: 357-370.
CAS
Google Scholar
Missaoui AM, Paterson AH, Bouton JH: Investigation of genomic organization in switchgrass ( Panicum virgatum L.) using DNA markers. Theor Appl Genet 2005, 110: 1372-1383. 10.1007/s00122-005-1935-6
CAS
Google Scholar
Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias C: Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 2010, 185: 745-760. 10.1534/genetics.110.113910
CAS
Google Scholar
Serba DD, Dhanasekaran V, Saha MC, Bouton JH: Mapping of QTLs for biomass, plant composition, and agronomic traits in switchgrass. In Proceedings of the Plant and Animal Genomes XIX Conference. San Diego: ; 2011:365.
Google Scholar
Serba D, Ziebell A, Bahri BA, Sykes R, Devos K, Brummer C, Bouton JH, Saha MC: Identification of putative genomic regions controlling recalcitrance in AP13 x VS16 switchgrass population. In Proceedings of the Plant and Animal Genomes XX conference. San Diego: ; 2012:0746.
Google Scholar
Soneji JR, Nageswara-Rao M, Sudarshana P, Panigrahi J, Kole C: Current status on on-going genome initiatives. In Principles and Practices of Plant Genomics. Volume 3: Advanced Genomics. Edited by: Enfield, New Hampshire, Edenbridge Ltd, Channel Islands, Kole C, Abbott AG. British Isles: Science Publishers, Inc; 2010:305-353.
Google Scholar
Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R: Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS One 2012, 7: e34225. 10.1371/journal.pone.0034225
CAS
Google Scholar
Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie R, Venter JC: Complementary DNA sequencing: expressed sequence tags and human genome project. Science 1991, 252: 1651-1656. 10.1126/science.2047873
CAS
Google Scholar
Tobias C, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G: Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 2005, 111: 956-964. 10.1007/s00122-005-0030-3
Google Scholar
Andersen JR, Lubberstedt T: Functional markers in plants. Trends Plant Sci 2003, 8: 554-560. 10.1016/j.tplants.2003.09.010
CAS
Google Scholar
Emrich SJ, Barbazuk WB, Li L, Schnable PS: Gene discovery and annotation using LCM-454 transcriptome sequencing. Genom Res 2007, 17: 69-73.
CAS
Google Scholar
Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, McCann MC, Carpita NC, Lazo GR: Comparative genomics in switchgrass using 61,585 high-quality expressed sequence tags. The Plant Genom 2008, 1: 111-124. 10.3835/plantgenome2008.08.0003
CAS
Google Scholar
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice ( Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genom Res 2001, 11: 1441-1452. 10.1101/gr.184001
CAS
Google Scholar
Tobias CM, Hayden DM, Twigg P, Sarath G: Genic microsatellite markers derived from EST sequences of switchgrass ( Panicum virgatum L.). Mol Ecol Notes 2006, 6: 185-187. 10.1111/j.1471-8286.2006.01187.x
CAS
Google Scholar
Saski CA, Li Z, Feltus FA, Luo H: New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics 2011, 12: 369. 10.1186/1471-2164-12-369
CAS
Google Scholar
Venter JC, Smith HO, Hood L: A new strategy for genome sequencing. Nature 1996, 381: 364-366. 10.1038/381364a0
CAS
Google Scholar
Sharma MK, Sharma R, Cao P, Jenkins J, Bartley LE, Qualls M, Grimwood J, Schmutz J, Rokhsar D, Ronald PC: A genome-wide survey of switchgrass genome structure and organization. PLoS One 2012, 7: e33892. 10.1371/journal.pone.0033892
CAS
Google Scholar
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KN: Reference genome sequence of the model plant Setaria . Nat Biotechnol 2012, 30: 555-561. 10.1038/nbt.2196
CAS
Google Scholar
Bock R: Structure, function, and inheritance of plastid genomes. In Cell and Molecular Biology of Plastids. Volume 19. Edited by: Bock R. Berlin Heidelberg: Springer; 2007:1610-2096.
Google Scholar
Raubeson L, Jansen R: Chloroplast genomes of plants. In Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants. Edited by: Henry R. Cambridge: CABI Publishing; 2005:45-68.
Google Scholar
Morris GP, Grabowski PP, Borevitz JO: Genomic diversity in switchgrass ( Panicum virgatum L.): from the continental scale to a dune landscape. Mol Ecol 2011, 20: 4938-4952. 10.1111/j.1365-294X.2011.05335.x
Google Scholar
Young HA, Lanzatella CL, Sarath G, Tobias CM: Chloroplast genome variation in upland and lowland switchgrass. PLoS One 2011, 6: e23980. 10.1371/journal.pone.0023980
CAS
Google Scholar
Grevich J, Daniell H: Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 2005, 24: 83-107. 10.1080/07352680590935387
CAS
Google Scholar
Lu K, Kaeppler SM, Vogel KP, Arumuganathan K, Lee DJ: Nuclear DNA content and chromosome numbers in switchgrass. Great Plains Res 1998, 8: 269-280.
Google Scholar
Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S: Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 1996, 36: 1049-1052. 10.2135/cropsci1996.0011183X003600040039x
Google Scholar
Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet 2008, 24: 133-141. 10.1016/j.tig.2007.12.007
CAS
Google Scholar
Morozova O, Marra MA: Applications of next-generation sequencing technologies in functional genomics. Genom 2008, 92: 255-264. 10.1016/j.ygeno.2008.07.001
CAS
Google Scholar
Wang W, Wang Y, Zhang Q, Qi Y, Guo D: Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 2009, 10: 465. 10.1186/1471-2164-10-465
Google Scholar
Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11: 31-46. 10.1038/nrg2626
CAS
Google Scholar
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012. 10.1155/2012/251364
Google Scholar
Young HA, Hernlem BJ, Anderton AL, Lanzatella CL, Tobias CM: Dihaploid stocks of switchgrass isolated by a screening approach. BioEnerg Res 2010, 3: 305-313. 10.1007/s12155-010-9081-7
Google Scholar
Zhang J, Lee Y, Torres-Jerez I, Wang M, Yin Y, Chou W, Je J, Shen H, Srivastava AC, Pennacchio C, Lindquist E, Grimwood J, Schmutz J, Xu Y, Sharma M, Sharma R, Bartley LE, Ronald PC, Saha MC, Dixon RA, Tang Y, Udvardi MK: Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass ( Panicum virgatum L.). Plant J 2013. 10.1111/tpj.12104
Google Scholar
Meyer E, Logan TL, Juenger TE: Transcriptome analysis and gene expression atlas for Panicum hallii var. filipes , a diploid model for biofuel research. Plant J 2012, 70: 879-890. 10.1111/j.1365-313X.2012.04938.x
CAS
Google Scholar
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5
CAS
Google Scholar
Xie F, Frazier TP, Zhang B: Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass ( Panicum virgatum ). Planta 2010, 232: 417-434. 10.1007/s00425-010-1182-1
CAS
Google Scholar
Henikoff S, Till BJ, Comai L: TILLING: traditional mutagenesis meets functional genomics. Plant Physiol 2004, 135: 630-636. 10.1104/pp.104.041061
CAS
Google Scholar
Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S: Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 2004, 37: 778-786. 10.1111/j.0960-7412.2003.01999.x
CAS
Google Scholar
Weil C: TILLING in grass species. Plant Physiol 2009, 149: 158-164. 10.1104/pp.108.128785
CAS
Google Scholar
Stewart CN Jr: Biofuels and biocontainment. Nat Biotechnol 2007, 25: 283-284. 10.1038/nbt0307-283
CAS
Google Scholar
Kwit C, Stewart CN Jr: Geneflow matters in switchgrass ( Panicum virgatum L.), a potential widespread biofuel feedstock. Ecol Appl 2012, 22: 3-7. 10.1890/11-1516.1
Google Scholar
Rieger MA, Lamond M, Preston C, Powles SB, Roush RT: Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 2002, 296: 2386-2388. 10.1126/science.1071682
CAS
Google Scholar
Daniell H: Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 2002, 20: 581-586.
CAS
Google Scholar
Mariani C, DeBeuckeleer M, Trueltner J, Leemans J, Goldberg RB: Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 1990, 347: 737-741. 10.1038/347737a0
CAS
Google Scholar
Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y: ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 2007, 5: 263-274. 10.1111/j.1467-7652.2006.00237.x
CAS
Google Scholar
Moon HS, Abercombie LL, Eda S, Blanvillain R, Thonson JG, Ow D, Stewart CN Jr: Transgene excision in pollen using a codon optimized serine resolvase CinH- RS 2 site-specific recombination system. Plant Mol Biol 2011, 75: 621-631. 10.1007/s11103-011-9756-2
CAS
Google Scholar
Daniell H, Datta R, Varma S, Gray S, Lee SB: Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 1998, 16: 345-348. 10.1038/nbt0498-345
CAS
Google Scholar
Hagemann R, Schroeder M: The cytological basis of plastid inheritance in angiosperms. Protoplasma 1989, 152: 57-64. 10.1007/BF01323062
Google Scholar
Vega-Sanchez ME, Ronald PC: Genetic and biotechnological approaches for biofuel crop improvement. Curr Opi Biotechnol 2010, 21: 218-224. 10.1016/j.copbio.2010.02.002
CAS
Google Scholar