Sun Y, Cheng J: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002, 83: 1-11. 10.1016/S0960-8524(01)00212-7
Article
Google Scholar
Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM: Ethanol can contribute to energy and environmental goals. Science 2006, 311: 506-508. 10.1126/science.1121416
Article
Google Scholar
Patel-Predd P: Overcoming the hurdles to producing ethanol from cellulose. Environ Sci Technol 2006, 40: 4052-4053. 10.1021/es062725u
Article
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina ). Nat Biotechnol 2008, 26: 553-560. 10.1038/nbt1403
Article
Google Scholar
Cherry JR, Fidantsef AL: Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 2003, 14: 438-443. 10.1016/S0958-1669(03)00099-5
Article
Google Scholar
Gritzali M Jr, Brown RD: The cellulase system of Trichoderma . The relationship between purified extracellular enzymes from induced or cellulose grown cells. Adv Chem Ser 1979, 181: 237-260.
Article
Google Scholar
Allen AL, Roche CD: Effects of strain and fermentation conditions on production of cellulase by Trichoderma reesei . Biotechnol Bioeng 1989, 33: 650-656. 10.1002/bit.260330519
Article
Google Scholar
Nakari-Setala T, Penttila M: Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol 1995, 61: 3650-3655.
Google Scholar
Chaudhuri BK, Sahai V: Production of cellulase using a mutant strain of Trichoderma reesei growing on lactose in batch cultures. Appl Microbiol Biotechnol 1993, 39: 194-196.
Article
Google Scholar
Jun H, Kieselbach T, Jonsson LJ: Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microbial Cell Fact 2011, 10: 68. 10.1186/1475-2859-10-68
Article
Google Scholar
Xin L, Jibin S, Nimtz M, Wissing J, An-Ping Z, Rinas U: The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Fact 2010, 9: 23. 10.1186/1475-2859-9-23
Article
Google Scholar
Jiang L, Wang J, Liang S, Wang X, Cen P, Xun Z: Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 2009, 100: 3403-3409. 10.1016/j.biortech.2009.02.032
Article
Google Scholar
Liu YP, Zhen P, Sun ZH, Ni Y, Dong JJ, Zhu LL: Economical succinic acid production from cane molasses by Actinobacillus succinogenes . Bioresour Technol 2008, 99: 1736-1742. 10.1016/j.biortech.2007.03.044
Article
Google Scholar
Ling M, Chen GG, Lin YS, Liang ZQ: Induction of cellulase gene transcription by a novel oligosaccharide: molasses alcohol stillage substance. World J Microbiol Biotechnol 2009, 25: 1485-1489. 10.1007/s11274-009-0017-3
Article
Google Scholar
Singh B, Satyanarayana T: Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 2008, 105: 1858-1865. 10.1111/j.1365-2672.2008.03929.x
Article
Google Scholar
Ilmen M, Thrane C, Penttila M: The glucose repressor gene cre1 of Trichoderma : isolation and expression of a full-length and a truncated mutant form. Mol Gene Genet 1996, 251: 451-460.
Google Scholar
Ilmen M, Saloheimo A, Onnela ML, Penttila M: Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei . Applied Environ Microbiol 1997, 63: 1298-1306.
Google Scholar
Juhasz T, Szengyel Z, Reczey K, Siika-Aho M, Viikari L: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 2005, 40: 3519-3525. 10.1016/j.procbio.2005.03.057
Article
Google Scholar
Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelly AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao L, Ward M: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei . J Biol Chem 2003, 278: 31988-31997. 10.1074/jbc.M304750200
Article
Google Scholar
Stricker AR, Mach RL, de Graaff LH: Regulation of transcription of cellulase- and hemicellulase-encoding genes in Aspergillus niger and Hypocrea jecorina ( Trichoderma reesei ). Appl Microbiol Biotechnol 2008, 78: 211-220. 10.1007/s00253-007-1322-0
Article
Google Scholar
Purkarthofer H, Steiner W: Induction of endo-β-xylanase in the fungus Thermomyces lanuginosus . Enzyme Microb Technol 1995, 7: 114-118.
Article
Google Scholar
Morikawa Y, Ohashi T, Mantani O, Okada H: Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 1995, 44: 106-111. 10.1007/BF00164488
Article
Google Scholar
Xiong H, Turunen O, Pastinen O, Leisola M, von Weymarn N: Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or D-glucose mixtures. Appl Microbiol Biotechnol 2004, 64: 353-358. 10.1007/s00253-003-1548-4
Article
Google Scholar
Sandgren M, Stahlberg J, Mitchinson C: Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol 2005, 89: 246-291. 10.1016/j.pbiomolbio.2004.11.002
Article
Google Scholar
Miettinen-Oinonen A, Paloheimo M, Lantto R, Suominen P: Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J Biotechnol 2005, 116: 305-317. 10.1016/j.jbiotec.2004.10.017
Article
Google Scholar
Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuel 2008, 1: 18. 10.1186/1754-6834-1-18
Article
Google Scholar
Shallom D, Shoham Y: Microbial hemicellulases. Curr Opin Microbiol 2003, 6: 219-223. 10.1016/S1369-5274(03)00056-0
Article
Google Scholar
Torronen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP: The two major xylanases from Trichoderma reesei : characterization of both enzymes and genes. Biogeosciences 1992, 10: 1461-1465.
Google Scholar
Seiboth B, Hartl L, Salovuori N, Lanthaler K, Robson GD, Vehmaanperä J, Penttilä ME, Kubicek CP: Role of the bga1 -encoded extracellular β-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl Environ Microbiol 2005, 71: 851-857. 10.1128/AEM.71.2.851-857.2005
Article
Google Scholar
Ouyang J, Yan M, Kong D, Xu L: A complete protein pattern of cellulose and hemicellulase genes in the filamentous fungus Trichoderma reesei . Biotechnol J 2006, 1: 1266-1274. 10.1002/biot.200600103
Article
Google Scholar
Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F: Enzymatic properties of the low molecular mass endoglucanases Cel12A (EGIII) and Cel45A (EGV) of Trichoderma reesei . J Biotechnol 2002, 99: 63-78. 10.1016/S0168-1656(02)00156-6
Article
Google Scholar
Komili S, Silver PA: Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 2008, 9: 38-48. 10.1038/nrg2223
Article
Google Scholar
Strauss J, Kubicek CP: β-Glucosidase and cellulase formation by a Trichoderma reesei mutant defective in constitutive β-glucosidase formation. J Gen Microbiol 1990, 136: 1321-1326. 10.1099/00221287-136-7-1321
Article
Google Scholar
Sternberg D, Mandels GR: Regulation of the cellulolytic system of Trichoderma reesei by sophorose: induction of cellulase and repression of β-glucosidase. J Bacteriol 1980, 144: 1197-1199.
Google Scholar
Fowler T, Brown RD Jr: The bgl1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 1992, 6: 3225-3235. 10.1111/j.1365-2958.1992.tb01777.x
Article
Google Scholar
Rajoka MI: Regulation of synthesis of endo-xylanse and β-xylosidase in Cellulomonas flavigena : a kinetic study. World J Microb Biotechnol 2005, 21: 463-469. 10.1007/s11274-004-2396-9
Article
Google Scholar
Rajoka MI: Kinetic parameters and thermodynamic values of β-xylosidase production by Klyyveromyces marxianus . Bioresour Technol 2007, 98: 2212-2219. 10.1016/j.biortech.2006.08.029
Article
Google Scholar
Roukas T: Pretreatment of beet molasses to increase pullulan production. Process Biochem 1998, 33: 805-810. 10.1016/S0032-9592(98)00048-X
Article
Google Scholar
Yao D, Kieselbach T, Komenda J, Promnares K, Prieto MA, Tichy M, Vermaas W, Funk C: Localization of the small CAB-like proteins in photosystem II. J Biol Chem 2007, 282: 267-276. 10.1074/jbc.M605463200
Article
Google Scholar
Ghose TK: Measurement of cellulase activities. Pure Appl Chem 1987, 59: 257-268.
Google Scholar
Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23: 257-270. 10.1016/0168-1656(92)90074-J
Article
Google Scholar
Miller GL, Blum R, Glennon WE, Burton AL: Measurement of carboxymethylcellulase activity. Anal Biochem 1960, 2: 127-132.
Article
Google Scholar
Berghem LER, Petterson LG: The mechanism of enzymatic cellulose degradation: Isolation and some properties of β-glucosidase form Trichderma viride . Eur J Biochem 1974, 46: 295-305. 10.1111/j.1432-1033.1974.tb03621.x
Article
Google Scholar
Alriksson B, Rose SH, Van Zyl WH, Sjöde A, Nilvebrant N-O, Jönsson LJ: Cellulase production from spent lignocelluloses hydrolysates by recombinant Aspergillus niger . Appl Environ Microbiol 2009, 75: 2366-2374. 10.1128/AEM.02479-08
Article
Google Scholar