Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin. 2007, 1: 119-134. 10.1002/bbb.4.
Article
Google Scholar
Limayem A, Ricke SC: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012, 38: 449-467. 10.1016/j.pecs.2012.03.002.
Article
Google Scholar
Mamo G, Faryar R, Karlsson EN: Microbial glycoside hydrolases for biomass utilization in biofuels applications. Biofuel Technologies. Edited by: Gupta VK, Tuohy MG. 2013, Heidelberg: Springer, 171-188.
Chapter
Google Scholar
Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC: Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008, 19: 235-240. 10.1016/j.copbio.2008.05.007.
Article
Google Scholar
Larkum AW, Ross IL, Kruse O, Hankamer B: Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012, 30: 198-205. 10.1016/j.tibtech.2011.11.003.
Article
Google Scholar
Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D: Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol. 2011, 102: 10163-10172. 10.1016/j.biortech.2011.08.030.
Article
Google Scholar
Jones CS, Mayfield SP: Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol. 2012, 23: 346-351. 10.1016/j.copbio.2011.10.013.
Article
Google Scholar
Graham J, Wilcox L, Graham L: Algae. 2009, San Francisco: Benjamin Cummings (Pearson), 2
Google Scholar
Abed R, Dobretsov S, Sudesh K: Applications of cyanobacteria in biotechnology. J Appl Microbiol. 2009, 106: 1-12. 10.1111/j.1365-2672.2008.03918.x.
Article
Google Scholar
Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard N-U, Sakuragi Y: Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol. 2012, 162: 134-147. 10.1016/j.jbiotec.2012.05.006.
Article
Google Scholar
Wang B, Wang J, Zhang W, Meldrum DR: Application of synthetic biology in cyanobacteria and algae. Front Microbiol. 2012, 3: 344-
Google Scholar
John RP, Anisha G, Nampoothiri KM, Pandey A: Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011, 102: 186-193. 10.1016/j.biortech.2010.06.139.
Article
Google Scholar
Aikawa S, Joseph A, Yamada R, Izumi Y, Yamagishi T, Matsuda F, Kawai H, Chang J-S, Hasunuma T, Kondo A: Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci. 2013, 6: 1844-1849. 10.1039/c3ee40305j.
Article
Google Scholar
Hoiczyk E, Hansel A: Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol. 2000, 182: 1191-1199. 10.1128/JB.182.5.1191-1199.2000.
Article
Google Scholar
Domozych DS: Algal cell walls. eLS. 2011, Chichester: John Wiley and Sons
Google Scholar
Allen MM: Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984, 38: 1-25. 10.1146/annurev.mi.38.100184.000245.
Article
Google Scholar
Ball SG, Morell MK: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol. 2003, 54: 207-233. 10.1146/annurev.arplant.54.031902.134927.
Article
Google Scholar
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C: The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot. 2011, 62: 1775-1801. 10.1093/jxb/erq411.
Article
Google Scholar
Choi SP, Nguyen MT, Sim SJ: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010, 101: 5330-5336. 10.1016/j.biortech.2010.02.026.
Article
Google Scholar
Harun R, Danquah MK, Forde GM: Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010, 85: 199-203.
Google Scholar
Harun R, Danquah MK: Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 2011, 46: 304-309. 10.1016/j.procbio.2010.08.027.
Article
Google Scholar
Harun R, Jason W, Cherrington T, Danquah MK: Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy. 2011, 88: 3464-3467. 10.1016/j.apenergy.2010.10.048.
Article
Google Scholar
Van Baalen C: Studies on marine blue-green algae. Bot Mar. 1962, 4: 129-139.
Article
Google Scholar
Stevens S, Balkwill D, Paone D: The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum. Arch Microbiol. 1981, 130: 204-212. 10.1007/BF00459520.
Article
Google Scholar
Stevens SE, Paone DA, Balkwill DL: Accumulation of cyanophycin granules as a result of phosphate limitation in Agmenellum quadruplicatum. Plant Physiol. 1981, 67: 716-719. 10.1104/pp.67.4.716.
Article
Google Scholar
Beck C, Knoop H, Axmann IM, Steuer R: The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics. 2012, 13: 56-10.1186/1471-2164-13-56.
Article
Google Scholar
Luque I, Forchhammer K: Nitrogen assimilation and C/N balance sensing. The cyanobacteria: molecular biology, genomics and evolution. Edited by: Herrero A, Flores E. 2008, Norfolk: Caister Academic Press, 335-382.
Google Scholar
Schwarz R, Forchhammer K: Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology. 2005, 151: 2503-2514. 10.1099/mic.0.27883-0.
Article
Google Scholar
Sauer J, Schreiber U, Schmid R, Völker U, Forchhammer K: Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol. 2001, 126: 233-243. 10.1104/pp.126.1.233.
Article
Google Scholar
Paone DA, Stevens SE: Nitrogen starvation and the regulation of glutamine synthetase in Agmenellum quadruplicatum. Plant Physiol. 1981, 67: 1097-1100. 10.1104/pp.67.6.1097.
Article
Google Scholar
Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A: Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot. 2013, 64: 2943-2954. 10.1093/jxb/ert134.
Article
Google Scholar
Guerra LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC: Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol. 2013, 166: 65-75. 10.1016/j.jbiotec.2013.04.005.
Article
Google Scholar
Gründel M, Scheunemann R, Lockau W, Zilliges Y: Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology. 2012, 158: 3032-3043. 10.1099/mic.0.062950-0.
Article
Google Scholar
Hickman JW, Kotovic KM, Miller C, Warrener P, Kaiser B, Jurista T, Budde M, Cross F, Roberts JM, Carleton M: Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942. Algal Research. 2013, 2: 98-106. 10.1016/j.algal.2013.01.008.
Article
Google Scholar
Xu Y, Tiago Guerra L, Li Z, Ludwig M, Charles Dismukes G, Bryant DA: Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng. 2013, 16: 56-67.
Article
Google Scholar
Kollman VH, Hanners JL, London RE, Adame EG, Walker TE: Photosynthetic preparation and characterization of 13C-labeled carbohydrates in Agmenellum quadruplicatum. Carbohydr Res. 1979, 73: 193-202. 10.1016/S0008-6215(00)85489-0.
Article
Google Scholar
Mahlmann DM, Jahnke J, Loosen P: Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach-Zehnder double-beam interference microscope. Eur J Phycol. 2008, 43: 355-364. 10.1080/09670260802168625.
Article
Google Scholar
Geider R, La Roche J: Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. Eur J Phycol. 2002, 37: 1-17. 10.1017/S0967026201003456.
Article
Google Scholar
Schlegel HG: General Microbiology. 1993, Cambridge: Cambridge University Press
Google Scholar
Koch AL: Growth measurement. Methods for General and Molecular Bacteriology. Edited by: Gerhardt P, Murray RGE, Wood WA, Krieg NR. 1994, Washington, D.C: American Society for Microbiology, 248-277.
Google Scholar
Berliner MD, Neely-Fisher D, Rosen B, Fisher R: Spheroplast induction in Anabaena variabilis Kütz and A. azollae stras. Protoplasma. 1987, 139: 36-40. 10.1007/BF01417533.
Article
Google Scholar
Sluiter AD, Hames BR, Ruiz RO, Scarlata C, Sluiter JB, Templeton DW, Crocker D: Determination of Structural Carbohydrates and Lignin in Biomass, Technical report NREL/TP-510-42618. 2008, National Renewable Energy Laboratory: Golden, Colorado
Google Scholar
Chan-u-tit P, Laopaiboon L, Jaisil P, Laopaiboon P: High level ethanol production by nitrogen and osmoprotectant supplementation under very high gravity fermentation conditions. Energies. 2013, 6: 884-899. 10.3390/en6020884.
Article
Google Scholar
Jones AM, Ingledew W: Fuel alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem. 1994, 29: 483-488. 10.1016/0032-9592(94)85017-8.
Article
Google Scholar
Jørgensen H: Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2009, 153: 44-57. 10.1007/s12010-008-8456-0.
Article
Google Scholar
Pereira FB, Guimarães PM, Teixeira JA, Domingues L: Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol. 2010, 101: 7856-7863. 10.1016/j.biortech.2010.04.082.
Article
Google Scholar
Devantier R, Pedersen S, Olsson L: Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol. 2005, 68: 622-629. 10.1007/s00253-005-1902-9.
Article
Google Scholar
Stevens S, Patterson C, Myers J: The production of hydrogen peroxide by blue‒green algae: a survey. J Phycol. 1973, 9: 427-430.
Google Scholar
Verduyn C, Postma E, Scheffers WA, Van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous‒culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992, 8: 501-517. 10.1002/yea.320080703.
Article
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem. 1956, 28: 350-356. 10.1021/ac60111a017.
Article
Google Scholar
Cannella D, Jørgensen H: Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?. Biotechnol Bioeng. 2013, 111: 59-68.
Article
Google Scholar