Chundawat SP, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng. 2011;2:121–45.
Article
CAS
Google Scholar
Myerly R, Nicholson M, Katzen R, Taylor J. The forest refinery. ChemTech. 1981;11:186–92.
CAS
Google Scholar
Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag. 2010;51:1412–21.
Article
CAS
Google Scholar
Lynd L, Wyman C, Gerngross T. Biocommodity engineering. Biotechnol Progress. 1999;15:777–93.
Article
CAS
Google Scholar
Werpy T, Petersen G. Top value added chemicals from biomass. Results of screening for potential candidates from sugars and synthesis gas. US. Department of Energy. 2004. http://www.osti.gov/bridge.
Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539.
Article
CAS
Google Scholar
Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev. 2012;41:1538–58.
Article
CAS
Google Scholar
Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007;107:2411–502.
Article
CAS
Google Scholar
Gallezot P. Process options for converting renewable feedstocks to bioproducts. Green Chem. 2007;9:295–302.
Article
CAS
Google Scholar
Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 2015;8:181.
Article
Google Scholar
Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A. Succinic Acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol. 2008;31:647–54.
Article
CAS
Google Scholar
Patel M, Cranck M, Dornburg V, Hermann B, Roes L, Husing B: The BREW project—medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. http://www.bio-economy.net/applications/files/Brew_project_report.pdf 2006.
Lin CSK, Luque R, Clark JH, Webb C, Du C. Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuel Bioprod Bioref. 2012;6:88–104.
Article
CAS
Google Scholar
Delhomme C, Weuster-Botz D, Kuhn FE. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem. 2009;11:13–26.
Article
CAS
Google Scholar
Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol. 2006;39:352–61.
Article
CAS
Google Scholar
Kirk- Othmer. Encyclopedia of chemical technology. 5th ed. New york: Wiley Blackwell; 1991.
Google Scholar
Jansen ML, van Gulik WM. Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol. 2014;30:190–7.
Article
CAS
Google Scholar
Clark JH, Deswarte FEI, Farmer TJ. The integration of green chemistry into future biorefineries. Biofuel Bioprod Bioref. 2009;3:72–90.
Article
CAS
Google Scholar
McKinlay JB, Vieille C, Zeikus JG. Prospects for a bio-based succinate industry. Appl Microb Biotechnol. 2007;76:727–40.
Article
CAS
Google Scholar
Lee SY, Cheon P, Chang HN. Kinetic study of organic acid formations and growth of Anaerobiospirillum succiniciproducens during continuous cultures. J Microbiol Biotechnol. 2009;19:1379–84.
CAS
Google Scholar
Maharaj K, Bradfield MFA, Nicol W. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity. Appl Microbiol Biotechnol. 2014;98:7379–86.
Article
CAS
Google Scholar
Bradfield MFA, Nicol W. Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: steady-state metabolic flux variation. Biochem Eng J. 2014;85:1–7.
Article
CAS
Google Scholar
Yan Q, Zheng P, Dong JJ, Sun ZH. A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biotechnol. 2013;89:1760–6.
Article
Google Scholar
Vemuri GN, Eiteman MA, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environm Microbiol. 2002;68:1715–27.
Article
CAS
Google Scholar
Jantama K, Haupt MJ, Svoronos Sa, Zhang X, Moore JC, Shanmugam KT, Ingram LO. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng. 2008;99:1140–53.
Article
CAS
Google Scholar
Van Heerden C, Nicol W. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics. Microb Cell Fact. 2013;12:80.
Article
Google Scholar
Balzer GJ, Thakker C, Bennett GN, San K-Y. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Engin. 2013;20:1–8.
Article
CAS
Google Scholar
Lee P, Lee S, Hong S, Chang HN. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioproc Biosyst Eng. 2003;26:63–7.
Article
CAS
Google Scholar
Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environm Microbiol. 2006;72:1939–48.
Article
CAS
Google Scholar
Oh IJ, Kim DH, Oh EK, Lee SY, Lee J. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol. 2009;19:167–71.
Article
CAS
Google Scholar
Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol. 2013;143:405–12.
Article
CAS
Google Scholar
Liu R, Liang L, Cao W, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresour Technol. 2013;135:574–7.
Article
CAS
Google Scholar
Li J, Zheng X-Y, Fang X-J, Liu S-W, Chen K-Q, Jiang M, Wei P, Ouyang P-K. A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresour Technol. 2011;102:6147–52.
Article
CAS
Google Scholar
Y-l Xi, W-y Dai, Xu R, Zhang J-h, Chen K-q, Jiang M, Wei P, Ouyang P-k. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioproc Biosyst Eng. 2013;36:1779–85.
Article
Google Scholar
Chen K, Jiang M, Wei P, Yao J, Wu H. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl Biochem Biotechnol. 2010;160:477–85.
Article
CAS
Google Scholar
Zheng P, Dong J-J, Sun Z-H, Ni Y, Fang L. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol. 2009;100:2425–9.
Article
CAS
Google Scholar
Liu Y-P, Zheng P, Sun Z-H, Ni Y, Dong J-J, Zhu L-L. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol. 2008;99:1736–42.
Article
CAS
Google Scholar
Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN. Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microl Technol. 2004;35:648–53.
Article
CAS
Google Scholar
Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol. 1999;51:545–52.
Article
CAS
Google Scholar
Guettler M, Rumler D, Jain M. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bact. 1999;49:207–16.
Article
CAS
Google Scholar
Lin SKC, Du C, Koutinas A, Wang R, Webb C. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J. 2008;41:128–35.
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.
Article
CAS
Google Scholar
Weiss ND, Nagle NJ, Tucker MP, Elander RT. High xylose yields from dilute acid pretreatment of corn stover under process-relevant conditions. Appl Biochem Biotechnol. 2009;155:115–25.
Article
Google Scholar
Schell DJ, Farmer J, Newman M, McMillan JD. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol. 2003;105–108:69–85.
Article
Google Scholar
Weiss ND, Farmer JD, Schell DJ. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour Technol. 2010;101:674–8.
Article
CAS
Google Scholar
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. NREL—Technical Report. http://www.nrel.gov/biomass/pdfs/47764.pdf 2011.
Davis R, Tao L, Tan ECD, Biddy MJ, Beckham GT, Scarlata C, Jacobson J, Cafferty K, Ross J, Lukas J, et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons. NREL-Technical Report http://www.nrel.gov/docs/fy14osti/60223.pdf 2013.
Petersen MØ, Larsen J, Thomsen MH. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy. 2009;33:834–40.
Article
CAS
Google Scholar
Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technol. 2002;81:33–44.
Article
CAS
Google Scholar
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol. 2000;74:17–24.
Article
CAS
Google Scholar
Chen X, Shekiro J, Elander R, Tucker M. Improved xylan hydrolysis of corn stover by deacetylation with high solids dilute acid pretreatment. Ind Eng Chem Research. 2011;51:70–6.
Article
Google Scholar
Chen X, Shekiro J, Franden MA, Wang W, Zhang M, Kuhn E, Johnson DK, Tucker MP. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol Biofuels. 2012;5:8.
Article
CAS
Google Scholar
Karp EM, Donohoe BS, O’Brien MH, Ciesielski PN, Mittal A, Biddy MJ, Beckham GT. Alkaline pretreatment of corn stover: bench-scale fractionation and stream characterization. ACS Sust Chem Eng. 2014;2:1481–91.
Article
CAS
Google Scholar
Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT. Adipic acid production from lignin. Energy Environm Sci. 2015;8:617–28.
Article
CAS
Google Scholar
Corona-González RI, Bories A, González-Álvarez V, Pelayo-Ortiz C. Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem. 2008;43:1047–53.
Article
Google Scholar
Sharma LN, Becker C, Chambliss CK. Analytical characterization of fermentation inhibitors in biomass pretreatment samples using liquid chromatography, UV-visible spectroscopy, and tandem mass spectrometry. Methods Mol Biol. 2009;581:125–43.
Article
CAS
Google Scholar
Franden MA, Pilath HM, Mohagheghi A, Pienkos PT, Zhang M. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol Biofuels. 2013;6:99.
Article
CAS
Google Scholar
Ran H, Zhang J, Gao Q, Lin Z, Bao J. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol Biofuels. 2014;7:51.
Article
Google Scholar
Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, et al. Lignin valorization through integrated biological funneling and chemical catalysis. PNAS. 2014;111:12013–8.
Article
CAS
Google Scholar
Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 2015;17:4951.
Article
Google Scholar
Van Heerden CD, Nicol W. Continuous succinic acid fermentation by Actinobacillus succinogenes. Biochem Eng J. 2013;73:5–11.
Article
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.
Article
Google Scholar
Sievers DA, Lischeske JJ, Biddy MJ, Stickel JJ. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries. Bioresour Technol. 2015;187:37–42.
Article
CAS
Google Scholar
Borges ER, Pereira N Jr. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol. 2011;38:1001–11.
Article
CAS
Google Scholar
Yu J, Li Z, Ye Q, Yang Y, Chen S. Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol. 2010;37:1033–40.
Article
CAS
Google Scholar
McKinlay J, Laivenieks M, Schindler B, McKinlay A, Siddaramappa S, Challacombe J, Lowry S, Clum A, Lapidus A, Burkhart K, et al. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. BMC Genom. 2010;11:680.
Article
CAS
Google Scholar
Jefferson KK. What drives bacteria to produce a biofilm? Fems Microbiol Lett. 2004;236:163–73.
Article
CAS
Google Scholar
Corona-Gonzalez RI, Bories A, Gonzalez-Alvarez V, Snell-Castro R, Toriz-Gonzalez G, Pelayo-Ortiz C. Succinic acid production with Actinobacillus succinogenes ZT-130 in the presence of succinic acid. Curr Microbiol. 2010;60:71–7.
Article
CAS
Google Scholar
Brink H, Nicol W. Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures. Microb Cell Fact. 2014;13:111.
Article
Google Scholar
Gutiérrez T, Buszko ML, Ingram LO, Preston JF. Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Biotechnol Fuel Chem. 2002;98:327–40.
Article
Google Scholar
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999;87:169–74.
Article
CAS
Google Scholar
Du B, Sharma LN, Becker C, Chen SF, Mowery RA, van Walsum GP, Chambliss CK. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng. 2010;107:430–40.
Article
CAS
Google Scholar
Urbance S, Pometto A III, DiSpirito A, Denli Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microb Biotechnol. 2004;65:664–70.
Article
CAS
Google Scholar