SEA. Energy use in the transportation sector 2014, Report ES2015:01. Swedish Energy Agency. 2015.
SEA. Sustainable bioenergy and liquid biofuels during 2014. Report: 2015:12. Swedish Energy Agency 2015.
EUROSTAT. Primary production of renewable energy by type. 2015. http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00081&language=en. Accessed 26 Jan 2016.
Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag. 2011;52(2):858–75.
Article
CAS
Google Scholar
JRC. Well-to-wheels analysis of future automotive fuels and powertrains in the European context, in Version 2c. Joint Research Center/CONCAWE/EUCAR. 2007.
Wiloso EI, Heijungs R, de Snoo GR. LCA of second generation bioethanol: a review and some issues to be resolved for good LCA practice. Renew Sustain Energy Rev. 2012;16(7):5295–308.
Article
CAS
Google Scholar
Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O. Biofuels: environment, technology and food security. Renew Sustain Energy Rev. 2009;13(6):1275–87.
Article
CAS
Google Scholar
Passoth V. Bioethanol and other Biofuels, in. In: Piskur J, Compagno C, editors. Molecular mechanisms in yeast carbon metabolism. Springer: Berlin Heidelberg; 2014. p. 217–59.
Chapter
Google Scholar
Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv. 2014;32(7):1336–60.
Article
CAS
Google Scholar
Hu C, Wu S, Wang Q, Jin Q, Shen H, Zhao KZ. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels. 2011;4(1):1–8.
Article
CAS
Google Scholar
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–52.
Article
CAS
Google Scholar
Thorpe R, Ratledge C. Fatty acid distribution in triglycerides of yeasts grown on glucose or n-alkanes. J Gen Microbiol. 1972;72(1):151–63.
Article
CAS
Google Scholar
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol. 2011;113(8):1052–73.
Article
CAS
Google Scholar
Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008;80(5):749–56.
Article
CAS
Google Scholar
Huang C, Chen XF, Xiong L, Chen XD, Ma L, Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013;31(2):129–39.
Article
CAS
Google Scholar
Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK. Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel. 2014;116:566–77.
Article
CAS
Google Scholar
Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, da Costa Sousa L, Balan V. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol. 2015;33(1):43–54.
Article
CAS
Google Scholar
Zhou W, Li Y, Zhang Y, Zhao Z. Energy efficiency evaluation of lipid production by oleaginous yeast Rhodosporidium toruloides. J Therm Anal Calorim. 2011;108(1):119–26.
Article
Google Scholar
Pan JG, Rhee JS. Biomass yields and energetic yields of oleaginous yeasts in batch culture. Biotechnol Bioeng. 1986;28(1):112–4.
Article
CAS
Google Scholar
Ratledge C. Microbial oils and fats—an overview. Biotechnol Oils Fats Ind. 1984;11:119.
CAS
Google Scholar
Edwards R, Larivé J-F, Rickeard D, Weindorf W. In: Godwin S, Hass H, Krasenbrink A, Lonza L, Maas H, Nelson R, Reid A, Rose KD, editors. Well-To-Tank Appendix 1–Version 4a Conversion factors and fuel properties. Luxembourg: Joint Research Center, Publications Office of the European Union. 2014.
Djomo SN, Kasmioui OE, Ceulemans R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenerg. 2011;3(3):181–97.
Article
CAS
Google Scholar
Edwards R, Larivé J-F, Beziat J-C. Well-to-wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. APPENDIX 2 Description and detailed energy and GHG balance of individual pathways. Luxembourg: Joint Research Center, Publications Office of the European Union. 2011.
EcoinventCenter. Ecoinvent data v2.2 ecoinvent reports no. 1–25. Dübendorf: Swiss Center for Life Cycle Inventorys; 2010.
Gode J, Martinsson F, Hagberg L, Öman A, Höglund J, Palm D. Book of environmental facts 2011 Estimated emission factors for fuels, electricity, heat and transports. Report 1183. Värmeforsk Service AB. SEA. 2011.
Nilsson D. Energy, exergy and emergy analysis of using straw as fuel in district heating plants. Biomass Bioenerg. 1997;13(1):63–73.
Article
Google Scholar
Börjesson P, Tufvesson LM. Agricultural crop-based biofuels–resource efficiency and environmental performance including direct land use changes. J Clean Prod. 2011;19(2):108–20.
Article
Google Scholar
Ekman A, Wallberg O, Joelsson E, Börjesson P. Possibilities for sustainable biorefineries based on agricultural residues—a case study of potential straw-based ethanol production in Sweden. Appl Energy. 2013;102:299–308.
Article
CAS
Google Scholar
Karlsson H, Börjesson P, Hansson P-A, Ahlgren S. Ethanol production in biorefineries using lignocellulosic feedstock–GHG performance, energy balance and implications of life cycle calculation methodology. J Clean Prod. 2014;83:420–7.
Article
CAS
Google Scholar
NREL. Bioethanol from corn stover process. A sample model provided by Aspen Tech. Golden, Colorado: National Renewable Energy Laboratory; 2006.
Humbrid D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and enzymatic Hydrolysis of Corn Stover. Technical Report NREL/TP-5100-47764. National Renewable Energy Laboratory. 2011.
Miao Z, Grift TE, Hansen AC, Ting KC. Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crops Prod. 2011;33(2):504–13.
Article
CAS
Google Scholar
Linde M, Jakobsson EL, Galbe M, Zacchi G. Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenerg. 2008;32(4):326–32.
Article
CAS
Google Scholar
Sassner P, Galbe M, Zacchi G. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg. 2008;32(5):422–30.
Article
CAS
Google Scholar
Hu C, Zhao X, Zhao J, Wu S, Zhao KZ. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol. 2009;100(20):4843–7.
Article
CAS
Google Scholar
Sitepu I, Selby T, Lin T, Zhu S, Boundary-Mills K. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol. 2014;41(7):1061–70.
Article
CAS
Google Scholar
Calvey CH, Su Y-K, Wills LB, McGee MS, Jeffries TW. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol. 2016;200:780–8.
Article
CAS
Google Scholar
Brandenburg J, Blomqvist J, Pickova J, Bonturi N, Sandgren M, Passoth V. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed batch cultivation. Yeast. 2016. doi:10.1002/yea.3160.
Google Scholar
Hensirisak P, Parasukulsatid P, Agblevor FA, Cundiff JS, Velander WH. Scale-up of microbubble dispersion generator for aerobic fermentation. Appl Biochem Biotechnol. 2002;101(3):211–27.
Article
CAS
Google Scholar
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113(8):1031–51.
Article
CAS
Google Scholar
Davis R, Kinchin C, Markham J, Tan ECD, Laurens LML, Sexton D, Knorr D, Schoen P, Lukas J. Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid and carbohydrate-derived fuel products. Technical Report NREL/TP-5100-62368, National Renewable Energy Laboratory. 2014.
Jin G, Yang F, Hu C, Shen H, Zhao KZ. Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol. 2012;111:378–82.
Article
CAS
Google Scholar
Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energ Fuels. 2010;24(7):4062–77.
Article
CAS
Google Scholar
Stephenson A, Dennis J, Scott S. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Saf Environ Prot. 2008;86(6):427–40.
Article
CAS
Google Scholar
Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43(17):6475–81.
Article
CAS
Google Scholar
AspenTech. Simulation of Alkali Catalyced Production of Biodiesel from Vegetable Oil. Simulation model provided by Aspen Tech. Based upon information in the paper: Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel Production From Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresource Technology. 2003;89:1–16.
Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS. Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett. 2013;35(6):831–42.
Article
CAS
Google Scholar
Buswell A, Mueller H. Mechanism of methane fermentation. Ind Eng Chem. 1952;44(3):550–2.
Article
CAS
Google Scholar
Cozma P, Ghinea C, Mămăligă I, Wukovits W, Friedl A, Gavrilescu M. Environmental impact assessment of high pressure water scrubbing biogas upgrading technology. CLEAN Soil Air Water. 2013;41(9):917–27.
Article
CAS
Google Scholar
Li Y, Zhao KZ, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol. 2007;41(3):312–7.
Article
Google Scholar
Börjesson P, Tufvesson L, Lantz M. Life Cycle Assessment of Biofuels in Sweden. Report no. 70. Lund University. 2010.
Edwards R, Hass H, Larivé J-F, Lonza L, Maas H, Rickeard D, Godwin S, Hamje H, Kassenbrink, Nelson R, Rose KD. Well-To-Wheels Report Version 4.a JRC Welll-to-Wheels Analysis. Joint Research Center. 2014.
van Boxtel A, Perez-Lopez P, Breitmayer E, Slegers PM. The potential of optimized process design to advance LCA performance of algae production systems. Appl Energ. 2015;154:1122–7.
Article
Google Scholar
Tunå P, Hulteberg C. Woody biomass-based transportation fuels—a comparative techno-economic study. Fuel. 2014;117:1020–6.
Article
Google Scholar
Swanson RM, Platon A, Satrio JA, Brown RC. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel. 2010;89:S11–9.
Article
CAS
Google Scholar
Martín M, Grossmann IE. Process optimization of FT-diesel production from lignocellulosic switchgrass. Ind Eng Chem Res. 2011;50(23):13485–99.
Article
Google Scholar
Trippe F, Fröhling M, Schultmann F, Stahl R, Henrich E, Dalai A. Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer–Tropsch synthesis as alternative process steps within biomass-to-liquid production. Fuel Process Technol. 2013;106:577–86.
Article
CAS
Google Scholar
Sims RE, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101(6):1570–80.
Article
CAS
Google Scholar
Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao KZ. Recycling microbial lipid production wastes to cultivate oleaginous yeasts. Bioresour Technol. 2015;175:91–6.
Article
CAS
Google Scholar