Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Oguz Koroglu E, Yusuf Cetinkaya A, Singh S, Arya D, Annie Modestra J, Vamsi Krishna K, Verma A, Ozkaya B, Lakaniemi A-M, Puhakka JA, Venkata Mohan S. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev. 2016;53:462–76.
Article
CAS
Google Scholar
Mohan S, Butti S, Amulya K, Dahiya S, Modestra J. Waste biorefinery:a new paradigm for a sustainable bioelectro economy. Trends Biotechnol. 2016;34(11):852–5.
Article
CAS
Google Scholar
Xie X, Ye M, Hsu PC, Liu N, Criddle CS, Cui Y. Microbial battery for efficient energy recovery. Proc Natl Acad Sci. 2013;110(40):15925–30.
Article
CAS
Google Scholar
Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv. 2015;33(3–4):317–34.
Article
Google Scholar
Wang H, Ren ZJ. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv. 2013;31(8):1796–807.
Article
Google Scholar
Harnisch F, Schroder U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev. 2010;39(11):4433–48.
Article
CAS
Google Scholar
Kumar A. The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem. 2017;1(3):0024.
Article
Google Scholar
Chaudhuri S, Lovley D. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 2003;21(10):1229–32.
Article
CAS
Google Scholar
Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7(5):375–81.
Article
CAS
Google Scholar
Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol. 2006;4(7):497–508.
Article
CAS
Google Scholar
Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337(6095):686–90.
Article
CAS
Google Scholar
Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002;295(5554):483.
Article
CAS
Google Scholar
Jafary T, Wan RWD, Ghasemi M, Kim BH, Jahim JM, Ismail M, Lim SS. Biocathode in microbial electrolysis cell: present status and future prospects. Renew Sust Energ Rev. 2015;47:23–33.
Article
CAS
Google Scholar
Luo H, Jenkins PE, Zen Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol. 2011;45(1):340–4.
Article
CAS
Google Scholar
Mehanna M, Kiely PD, Call DF, Logan BE. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol. 2010;44(24):9578–83.
Article
CAS
Google Scholar
Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014;56(3):11–25.
Article
CAS
Google Scholar
Rabaey K, Rozendal RA. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010;8(10):706–16.
Article
CAS
Google Scholar
Han L, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335(6076):1596.
Article
Google Scholar
Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351(6268):74–7.
Article
CAS
Google Scholar
Liu C, Colon BC, Ziesack M, Silver PA, Nocera DG. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science. 2016;352(6290):1210–3.
Article
CAS
Google Scholar
Sadhukhan J, Lloyd JR, Scott K, Premier GC, Yu EH, Curtis T, Head IM. A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sust Energ Rev. 2016;56:116–32.
Article
CAS
Google Scholar
Choi O, Sang BI. Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels. 2016;9(1):1–14.
Article
Google Scholar
Lin T, Bai X, Hu Y, Li B, Yuan Y, Song H, Yang Y, Wang J. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AIChE J. 2016.
Yang Y, Wu Y, Hu Y, Cao Y, Poh CL, Cao B, Song H. Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell. ACS Catal. 2015;5(11):6937–45.
Article
CAS
Google Scholar
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841–5.
Article
CAS
Google Scholar
Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP. Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev. 2011;15(9):4950–62.
Article
CAS
Google Scholar
Jackson S, Nicolson S. Xylose as a nectar sugar: from biochemistry to ecology. Comp Biochem Phys B. 2002;131(4):613–20.
Article
Google Scholar
Catal T, Li K, Bermek H, Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources. 2008;175(1):196–200.
Article
CAS
Google Scholar
Huang L, Logan BE. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl Microbiol Biotechnol. 2008;80(4):655–64.
Article
CAS
Google Scholar
Huang L, Zeng RJ, Angelidaki I. Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol. 2008;99(10):4178–84.
Article
CAS
Google Scholar
Utrilla J, Licona-Cassani C, Marcellin E, Gosset G, Nielsen LK, Martinez A. Engineering and adaptive evolution of escherichia coli, for D-lactate fermentation reveals gatc as a xylose transporter. Metab Eng. 2012;14(5):469–76.
Article
CAS
Google Scholar
Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng. 2012;14(6):611–22.
Article
CAS
Google Scholar
Young EM, Comer AD, Huang H, Alper HS. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng. 2012;14(4):401.
Article
CAS
Google Scholar
Yuan Y, Du J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012;40(18):177–209.
Google Scholar
Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng. 2012;14(5):569.
Article
CAS
Google Scholar
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. Towards environmental systems biology of Shewanella. Nat Rev Microbiol. 2008;6(8):592–603.
Article
CAS
Google Scholar
Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sust Energ Rev. 2016;56:1322–36.
Article
CAS
Google Scholar
Coursolle D, Gralnick JA. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol. 2010;77(4):995–1008.
CAS
Google Scholar
Okamoto A, Nakamura R, Hashimoto K. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA–MtrCAB protein complexes. Electrochim Acta. 2011;56(16):5526–31.
Article
CAS
Google Scholar
Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ. Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci. 2009;106(52):22169–74.
Article
CAS
Google Scholar
Clarke TA, Richardson DJ. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci. 2011;108(23):9384–9.
Article
CAS
Google Scholar
Mao L, Verwoerd WS. Theoretical exploration of optimal metabolic flux distributions for extracellular electron transfer by Shewanella oneidensis MR-1. Biotechnol Biofuels. 2014;7(1):1–20.
Article
Google Scholar
El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci. 2010;107(42):18127–31.
Article
CAS
Google Scholar
Okamoto A, Hashimoto K, Nealson KH, Nakamura R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci. 2013;110(19):7856–61.
Article
CAS
Google Scholar
Pinchuk GE, Rodionov DA, Yang C, Li X, Osterman AL, Dervyn E, Geydebrekht OV, Reed SB, Romine MF, Collart FR, Scott JH, Fredrickson JK, Beliaev AS. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci. 2009;106(8):2874–9.
Article
CAS
Google Scholar
Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci. 2014;111(35):12883–8.
Article
CAS
Google Scholar
White GF, Shi Z, Shi L, Wang Z, Dohnalkova AC, Marshall MJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ, Clarke TA. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci. 2013;110(16):6346–51.
Article
CAS
Google Scholar
Hu Y, Wu Y, Mukherjee M, Cao B. A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis. Chem Commun. 2017;53:1646–8.
Article
CAS
Google Scholar
Hu Y, Yang Y, Katz E, Song H. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun. 2015;51(20):4184–7.
Article
CAS
Google Scholar
Li Z, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem Commun. 2011;47(11):3060–2.
Article
CAS
Google Scholar
Ding Y, Peng N, Du Y, Ji L, Cao B. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) Immobilization. Appl Environ Microbiol. 2013;80(4):1498–506.
Article
Google Scholar
Serres MH, Riley M. Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol. 2006;188(13):4601–9.
Article
CAS
Google Scholar
Flynn CM, Hunt KA, Gralnick JA, Srienc F. Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems. 2012;107(2):120–8.
Article
CAS
Google Scholar
Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS, Fredrickson JK. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol. 2011;77(23):8234–40.
Article
CAS
Google Scholar
Pinchuk GE, Hill EA, Geydebrekht OV, De Ingeniis J, Zhang X, Osterman A, Scott JH, Reed SB, Romine MF, Konopka AE, Beliaev AS, Fredrickson JK, Reed JL. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol. 2010;6(6):e1000822.
Article
Google Scholar
Sekar R, Shin HD, DiChristina TJ. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis. Appl Environ Microbiol. 2016;82(13):3996–4005.
Article
CAS
Google Scholar
Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hagerdal B. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2009;82(1):123–30.
Article
CAS
Google Scholar
Leandro MJ, Goncalves P, Spencer-Martins I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J. 2006;395(3):543–9.
Article
CAS
Google Scholar
Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang W, Yang S, Yang C, Jiang W. Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC genomics. 2010;11:255.
Article
Google Scholar
Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic Engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267(5195):240–3.
Article
CAS
Google Scholar
Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol. 2007;25(3):319–26.
Article
CAS
Google Scholar
Nduko JM, Matsumoto K, Ooi T, Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng. 2013;15:159–66.
Article
CAS
Google Scholar
Wovcha MG, Steuerwald DL, Brooks KE. Amplification of d-xylose and d-glucose isomerase activities in Escherichia coli by gene cloning. Appl Environ Microbiol. 1983;45(4):1402.
CAS
Google Scholar
Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol. 2015;4(7):815–23.
Article
CAS
Google Scholar
Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotech. 2006;17(3):320–6.
Article
CAS
Google Scholar
Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem. 2009;284(42):28865–73.
Article
CAS
Google Scholar
Verho R, Londesborough J, Penttila M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69(10):5892–7.
Article
CAS
Google Scholar
Kuyper M, Winkler AA, van Dijken JP, Pronk JT. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 2004;4(6):655–64.
Article
CAS
Google Scholar
Kim SR, Ha SJ, Kong II, Jin YS. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng. 2012;14(4):336–43.
Article
CAS
Google Scholar
Liu T, Yu YY, Deng XP, Ng CK, Cao B, Wang JY, Rice SA, Kjelleberg S, Song H. Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol Bioeng. 2015;112(10):2051–9.
Article
CAS
Google Scholar
Han S, Gao X, Ying H, Zhou CC. NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chem. 2016;18(8):2473–8.
Article
CAS
Google Scholar
Yong YC, Yu YY, Yang Y, Li CM, Jiang R, Wang XY, Wang J, Song H. Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. Electrochem Commun. 2012;19:13–6.
Article
CAS
Google Scholar
Jensen HM, Cantor CR. Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci. 2010;107(45):19213–8.
Article
CAS
Google Scholar
TerAvest MA, Ajo-Franklin CM. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng. 2016;113(4):687–97.
Article
CAS
Google Scholar
Jensen H, Teravest M, Kokish M, Ajofranklin CM. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth Biol. 2016;5(7):679–88.
Article
CAS
Google Scholar
Tsvetanova B, Peng L, Liang X, Li K, Yang JP, Ho T, Shirley J, Xu L, Potter J, Kudlicki W, Peterson T, Katzen F. Genetic assembly tools for synthetic biology. Methods Enzymol. 2011;498:327–48.
Article
CAS
Google Scholar
Ellis T, Adie T, Baldwin GS. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb). 2011;3:109–18.
Article
CAS
Google Scholar
Yong YC, Yu YY, Zhang X, Song H. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Ed. 2014;53(17):4480–3.
Article
CAS
Google Scholar
Yong XY, Feng J, Chen YL, Shi DY, Xu YS, Zhou J, Wang SY, Xu L, Yong YC, Sun YM, Shi CL, OuYang PK, Zheng T. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron. 2014;56:19–25.
Article
CAS
Google Scholar
Bernofsky C, Swan M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem. 1973;53(2):452–8.
Article
CAS
Google Scholar