Smith SP, Bayer EA, Czjzek M. Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol. 2017;44:151–60.
Article
CAS
Google Scholar
Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010;79:655–81.
Article
CAS
Google Scholar
Smith SP, Bayer EA. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol. 2013;23:686–94.
Article
CAS
Google Scholar
Artzi L, Bayer EA, Morais S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Micro. 2017;15:83–95.
Article
CAS
Google Scholar
Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol. 1982;43:1125–32.
CAS
Google Scholar
Irwin DC, Zhang S, Wilson DB. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. FEBS J. 2000;267:4988–97.
CAS
Google Scholar
Devillard E, Goodheart DB, Karnati SKR, Bayer EA, Lamed R, Miron J, et al. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol. 2003;186:136–45.
Article
Google Scholar
Wilson DB. Demonstration of the importance for cellulose hydrolysis of CelS, the most abundant cellulosomal cellulase in Clostridium thermocellum. Proc Natl Acad Sci USA. 2010;107:17855–6.
Article
CAS
Google Scholar
Yi Z, Su X, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS ONE. 2013;8:e84172.
Article
Google Scholar
Lamed R, Bayer EA. The cellulosome of Clostridium thermocellum. Adv Appl Microbiol. 1988;33:1–46.
Article
Google Scholar
Lynd LR, Grethlein HE, Wolkin RH. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol. 1989;55:3131–9.
CAS
Google Scholar
Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16:577–83.
Article
CAS
Google Scholar
Morag E, Bayer EA, Hazlewood GP, Gilbert HJ, Lamed R. Cellulase Ss (CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of Clostridium thermocellum. Appl Biochem Biotechnol. 1993;43:147.
Article
CAS
Google Scholar
Morag E, Halevy I, Bayer E, Lamed R. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J Bacteriol. 1991;173:4155–62.
Article
CAS
Google Scholar
Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, et al. Deletion of the Cel48S cellulase from Clostridium thermocellum. P Natl Acad Sci USA. 2010;107:17727–32.
Article
CAS
Google Scholar
Wang W, Kruus K, Wu J. Cloning and expression of the Clostridium thermocellum celS gene in Escherichia coli. Appl Microbiol Biotechnol. 1994;42:346–52.
CAS
Google Scholar
Kruus K, Wang WK, Ching J, Wu JH. Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol. 1995;177:1641–4.
Article
CAS
Google Scholar
Kruus K, Wang WK, Chiu P-C, Ching J, Wang T-Y, Wu JD. CelS: a major exoglucanase component of Clostridium thermocellum cellulosome. In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic Conversion of Biomass for Fuels Production, vol. 566. Washington DC: ACS Publications; 1994.
Chapter
Google Scholar
Guimaraes BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol. 2002;320:587–96.
Article
CAS
Google Scholar
Wang WK, Kruus K, Wu J. Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase Ss (CelS), a major cellulosome component. J Bacteriol. 1993;175:1293–302.
Article
CAS
Google Scholar
Smith MA, Rentmeister A, Snow CD, Wu T, Farrow MF, Mingardon F, et al. A diverse set of family 48 bacterial glycoside hydrolase cellulases created by structure-guided recombination. FEBS J. 2012;279:4453–65.
Article
CAS
Google Scholar
Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. Stoichiometric assembly of the cellulosome generates maximum synergy for the degradation of crystalline cellulose, as revealed by in vitro reconstitution of the Clostridium thermocellum cellulosome. Appl Environ Microbiol. 2015;81:4756–66.
Article
CAS
Google Scholar
Kostylev M, Wilson DB. Determination of the catalytic base in family 48 glycosyl hydrolases. Appl Environ Microbiol. 2011;77:6274–6.
Article
CAS
Google Scholar
Chen M, Bu L, Alahuhta M, Brunecky R, Xu Q, Lunin VV, et al. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases. Proteins. 2016;84:295–304.
Article
CAS
Google Scholar
Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, et al. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE. 2009;4:e5271.
Article
Google Scholar
Dykstra AB, St Brice L, Rodriguez M Jr, Raman B, Izquierdo J, Cook KD, et al. Development of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex. J Proteome Res. 2014;13:692–701.
Article
CAS
Google Scholar
Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69:124–54.
Article
CAS
Google Scholar
Gilbert HJ. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol. 2007;63:1568–76.
Article
CAS
Google Scholar
Cui GZ, Hong W, Zhang J, Li WL, Feng Y, Liu YJ, et al. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods. 2012;89:201–8.
Article
CAS
Google Scholar
Johnson EA, Madia A, Demain AL. Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol. 1981;41:1060–2.
CAS
Google Scholar
Cui Z, Li Y, Xiao Y, Feng Y, Cui Q. Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824. Biomol NMR Assign. 2013;7:73–6.
Article
CAS
Google Scholar
Zhang J, Liu S, Li R, Hong W, Xiao Y, Feng Y, et al. Efficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum. Biotechnol Biofuels. 2017;10:124.
Article
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
Google Scholar
Kessenbrock M, Groth G. Circular dichroism and fluorescence spectroscopy to study protein structure and protein-protein interactions in ethylene signaling. Methods Mol Biol. 2017;1573:141–59.
Article
Google Scholar
Wood TM. Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol. 1988;160:19–25.
Article
CAS
Google Scholar
Zhang J, Liu Y-J, Cui G-Z, Cui Q. A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels. 2015;8:36.
Article
Google Scholar
Wang QS, Yu F, Huang S, Sun B, Zhang KH, Liu K, et al. The macromolecular crystallography beamline of SSRF. Nucl Sci Tech. 2015;26:12–7.
Google Scholar
Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011;67:271–81.
Article
CAS
Google Scholar
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.
Article
CAS
Google Scholar
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.
Article
CAS
Google Scholar
Choi SK, Ljungdahl LG. Dissociation of the cellulosome of Clostridium thermocellum in the presence of ethylenediaminetetraacetic acid occurs with the formation of truncated polypeptides. Biochemistry. 1996;35:4897–905.
Article
CAS
Google Scholar
Wu JD, Orme-Johnson WH, Demain AL. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry. 1988;27:1703–9.
Article
CAS
Google Scholar
Ng TK, Weimer PJ, Zeikus JG. Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol. 1977;114:1–7.
Article
CAS
Google Scholar
Prawitwong P, Waeonukul R, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Deng L, et al. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable beta-glucosidase. Biotechnol Biofuels. 2013;6:184.
Article
Google Scholar
Hong W, Zhang J, Feng Y, Mohr G, Lambowitz AM, Cui G-Z, et al. The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnol Biofuels. 2014;7:80.
Article
Google Scholar
Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, et al. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio. 2010;1:e00285.
Article
CAS
Google Scholar
Lu Y, Zhang YH, Lynd LR. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA. 2006;103:16165–9.
Article
CAS
Google Scholar
Chen C, Cui Z, Xiao Y, Cui Q, Smith SP, Lamed R, et al. Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. J Struct Biol. 2014;188:188–93.
Article
CAS
Google Scholar
Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, et al. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem. 2005;280:16325–34.
Article
CAS
Google Scholar
Schein CH. Production of soluble recombinant proteins in bacteria. Nat Biotechnol. 1989;7:1141–9.
Article
CAS
Google Scholar
Qi Y, Hulett FM. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol. 1998;28:1187–97.
Article
CAS
Google Scholar
Wei S, Kumar V, Banker G. Phosphoric acid mediated depolymerization and decrystallization of cellulose: preparation of low crystallinity cellulose—a new pharmaceutical excipient. Int J Pharm. 1996;142:175–81.
Article
CAS
Google Scholar
Zhang Y-HP, Cui J, Lynd LR, Kuang LR. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules. 2006;7:644–8.
Article
CAS
Google Scholar
Dykstra AB, Rodriguez M Jr, Raman B, Cook KD, Hettich RL. Characterizing the range of extracellular protein post-translational modifications in a cellulose-degrading bacteria using a multiple proteolyic digestion/peptide fragmentation approach. Anal Chem. 2013;85:3144–51.
Article
CAS
Google Scholar
Hospes M, Hendriks J, Hellingwerf KJ. Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation. Photoch Photobio Sci. 2013;12:479–88.
Article
CAS
Google Scholar