Ghrist AC, Heil G, Stauffer GV. GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon. Microbiology. 2001;147:2215–21.
Article
CAS
PubMed
Google Scholar
Chung D, Cha M, Guss AM, Westpheling J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA. 2014;111:8931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brethauer S, Studer MH. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci. 2014;7:1446–53.
Article
CAS
Google Scholar
Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA. 2011;108:19949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin H-D, McClendon S, Vo T, Chen RR. Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol. 2010;76:8150–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saini M, Chen MH, Chiang CJ, Chao YP. Potential production platform of n-butanol in Escherichia coli. Metab Eng. 2015;27:76–82.
Article
CAS
PubMed
Google Scholar
Lynd LR. The grand challenge of cellulosic biofuels. Nat Biotechnol. 2017;35:912.
Article
CAS
PubMed
Google Scholar
Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Valorization of biomass: deriving more value from waste. Science. 2012;337:695.
Article
CAS
PubMed
Google Scholar
Sanders J, Scott E, Weusthuis R, Mooibroek H. Bio-refinery as the bio-inspired process to bulk chemicals. Macromol Biosci. 2007;7:105–17.
Article
CAS
PubMed
Google Scholar
Scott E, Peter F, Sanders J. Biomass in the manufacture of industrial products—the use of proteins and amino acids. Appl Microbiol Biotechnol. 2007;75:751–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy. 2012;44:168–81.
Article
CAS
Google Scholar
Prado RdM, Caione G, Campos CNS. Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl Environ Soil Sci. 2013;2013:8.
Article
CAS
Google Scholar
Hicks TM, Verbeek CJR. Protein-rich by-products: production statistics, legislative restrictions, and management options. In: Ghillon GS, editor. Protein byproducts: transformation from environmental burden into value-added products. London: Academic Press; 2016. p. 1–18.
Google Scholar
Norton TA, Melkonian M, Andersen RA. Algal biodiversity. Phycologia. 1996;35:308–26.
Article
Google Scholar
Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007;25:207–10.
Article
CAS
PubMed
Google Scholar
Sheehan J, Dunahay T, Benemann J, Roessler P. Look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae; close-out report. National Renewable Energy Lab., Golden, Co. US; 1998.
Koo J, Bai SC, Kim K, Kim S. Optimum dietary level of Chlorella powder as a feed additive for growth performance of Juvenile olive flounder, Paralichthys olivaceus. J Appl Aquacult. 2001;11:55–66.
Article
Google Scholar
Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels. 2014;7:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tchorbanov B, Bozhkova M. Enzymatic hydrolysis of cell proteins in green algae Chlorella and Scenedesmus after extraction with organic solvents. Enzyme Microb Technol. 1988;10:233–8.
Article
Google Scholar
Salati S, D’Imporzano G, Menin B, Veronesi D, Scaglia B, Abbruscato P, Mariani P, Adani F. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour Technol. 2017;230:82–9.
Article
CAS
PubMed
Google Scholar
Kightlinger W, Chen K, Pourmir A, Crunkleton DW, Price GL, Johannes TW. Production and characterization of algae extract from Chlamydomonas reinhardtii. Electron J Biotechnol. 2014;17:3.
Article
CAS
Google Scholar
Hariskos I, Posten C. Biorefinery of microalgae—opportunities and constraints for different production scenarios. Biotechnol J. 2014;9:739–52.
Article
PubMed
CAS
Google Scholar
Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. High protein- and high lipid-producing microalgae from Northern Australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol. 2015;3:53.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Sheng L, Yang X. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresour Technol. 2017;229:119–25.
Article
CAS
PubMed
Google Scholar
Vargas MA, Rodríguez H, Moreno J, Olivares H, Campo JAD, Rivas J, Guerrero MG. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J Phycol. 1998;34:812–7.
Article
CAS
Google Scholar
Diprat AB, Menegol T, Boelter JF, Zmozinski A, Vale MGR, Rodrigues E, Rech R. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids. J Sci Food Agric. 2017;97:3463–8.
Article
CAS
PubMed
Google Scholar
Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science; 2004.
Google Scholar
Anupama, Ravindra P. Value-added food: single cell protein. Biotechnol Adv. 2000;18:459–79.
Article
CAS
PubMed
Google Scholar
Tokushima H, Inoue-Kashino N, Nakazato Y, Masuda A, Ifuku K, Kashino Y. Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnol Biofuels. 2016;9:235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Solati Z, Manevski K, Jørgensen U, Labouriau R, Shahbazi S, Lærke PE. Crude protein yield and theoretical extractable true protein of potential biorefinery feedstocks. Ind Crops Prod. 2018;115:214–26.
Article
CAS
Google Scholar
Mulder W. Proteins in biomass streams. Wageningen: Food and Biobased Research; 2010.
Google Scholar
Sari YW, Bruins ME, Sanders JP. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind Crops Prod. 2013;43:78–83.
Article
CAS
Google Scholar
Kumar MBA, Gao Y, Shen W, He L. Valorisation of protein waste: an enzymatic approach to make commodity chemicals. Front Chem Sci Eng. 2015;9:295–307.
Article
CAS
Google Scholar
Zhu G, Zhu X, Fan Q, Wan X. Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl. 2011;55:409–16.
Article
Google Scholar
Villegas-Torres MF, Ward JM, Lye GJ. The protein fraction from wheat-based dried distiller’s grain with solubles (DDGS): extraction and valorization. New Biotechnol. 2015;32:606–11.
Article
CAS
Google Scholar
Zhang C, Sanders JPM, Bruins ME. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves. Biomass Bioenergy. 2014;67:466–72.
Article
CAS
Google Scholar
Edwards RH, Miller RE, De Fremery D, Knuckles BE, Bickoff EM, Kohler GO. Pilot plant production of an edible white fraction leaf protein concentrate from alfalfa. J Agric Food Chem. 1975;23:620–6.
Article
CAS
Google Scholar
Fleurence J, Le Coeur C, Mabeau S, Maurice M, Landrein A. Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol. 1995;7:577–82.
Article
CAS
Google Scholar
Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010;101:S75–7.
Article
CAS
PubMed
Google Scholar
Postma PR, Suarez-Garcia E, Safi C, Yonathan K, Olivieri G, Barbosa MJ, Wijffels RH, Eppink MHM. Energy efficient bead milling of microalgae: effect of bead size on disintegration and release of proteins and carbohydrates. Bioresour Technol. 2017;224:670–9.
Article
CAS
PubMed
Google Scholar
Reisinger M, Tirpanalan Ö, Prückler M, Huber F, Kneifel W, Novalin S. Wheat bran biorefinery—a detailed investigation on hydrothermal and enzymatic treatment. Bioresour Technol. 2013;144:179–85.
Article
CAS
PubMed
Google Scholar
Sari YW, Mulder WJ, Sanders JP, Bruins ME. Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J. 2015;10:1138–57.
Article
CAS
PubMed
Google Scholar
Anderson RL, Wolf WJ, Glover D. Extraction of soybean meal proteins with salt solutions at pH 4.5. J Agric Food Chem. 1973;21:251–4.
Article
CAS
Google Scholar
Wu YV, Sexson KR, Cavins JF, Inglett GE. Oats and their dry-milled fractions. Protein isolation and properties of four varieties. J Agric Food Chem. 1972;20:757–61.
Article
CAS
Google Scholar
Mohamed A, Hojilla-Evangelista MP, Peterson SC, Biresaw G. Barley protein isolate: thermal, functional, rheological, and surface properties. J Am Oil Chem Soc. 2007;84:281–8.
Article
CAS
Google Scholar
Gangopadhyay N, Hossain BM, Rai KD, Brunton PN. A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules. 2015;20:10884–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maehre KH, Jensen I-J, Eilertsen K-E. Enzymatic pre-treatment increases the protein bioaccessibility and extractability in Dulse (Palmaria palmata). Mar Drugs. 2016;14:196.
Article
PubMed Central
CAS
Google Scholar
Lee HC, Htoon AK, Paterson JL. Alkaline extraction of starch from Australian lentil cultivars Matilda and Digger optimised for starch yield and starch and protein quality. Food Chem. 2007;102:551–9.
Article
CAS
Google Scholar
Meister E, Thompson NR. Physical–chemical methods for the recovery of protein from waste effluent of potato chip processing. J Agric Food Chem. 1976;24:919–23.
Article
CAS
Google Scholar
Bals B, Teachworth L, Dale B, Balan V. Extraction of proteins from switchgrass using aqueous ammonia within an integrated biorefinery. Appl Biochem Biotechnol. 2007;143:187–98.
Article
CAS
PubMed
Google Scholar
Bals B, Dale BE. Economic comparison of multiple techniques for recovering leaf protein in biomass processing. Biotechnol Bioeng. 2011;108:530–7.
Article
CAS
PubMed
Google Scholar
Sinclair S. Protein extraction from pasture: the plant fractionation bio-process and adaptability to farming systems. New Zealand: Ministry of Agriculture and Forestry; 2009.
Google Scholar
Lestari D, Mulder W, Sanders J. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J. 2010;50:16–23.
Article
CAS
Google Scholar
Barbarino E, Lourenço SO. An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol. 2005;17:447–60.
Article
CAS
Google Scholar
Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B. 2007;849:1–31.
Article
CAS
Google Scholar
Kadam SU, Tiwari BK, O’Donnell CP. Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem. 2013;61:4667–75.
Article
CAS
PubMed
Google Scholar
Widyarani, Bowden NA, Kolfschoten RC, Sanders JPM, Bruins ME. Fractional precipitation of amino acids from agro-industrial residues using ethanol. Ind Eng Chem Res. 2016;55:7462–72.
Article
CAS
Google Scholar
Ozols J. Amino acid analysis. In: Deutscher MP, editor. Methods in enzymology, vol. 182. New York: Academic Press; 1990. p. 587–601.
Google Scholar
Provansal MMP, Cuq JLA, Cheftel JC. Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid crosslinks and isomerization of lysine residues. J Agric Food Chem. 1975;23:938–43.
Article
CAS
PubMed
Google Scholar
Dalev PG. Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol. 1994;48:265–7.
Article
CAS
Google Scholar
Gildberg A, Stenberg E. A new process for advanced utilisation of shrimp waste. Process Biochem. 2001;36:809–12.
Article
CAS
Google Scholar
Sari YW, Alting AC, Floris R, Sanders JPM, Bruins ME. Glutamic acid production from wheat by-products using enzymatic and acid hydrolysis. Biomass Bioenergy. 2014;67:451–9.
Article
CAS
Google Scholar
Bals B, Brehmer B, Dale B, Sanders J. Protease digestion from wheat stillage within a dry grind ethanol facility. Biotechnol Progr. 2010;27:428–34.
Article
CAS
Google Scholar
Dlamini BC, Buys EM, Taylor JRN. Effect of sorghum type and malting on production of free amino nitrogen in conjunction with exogenous protease enzymes. J Sci Food Agric. 2014;95:417–22.
Article
PubMed
CAS
Google Scholar
Miasnikov A, Maria MA, Power SD. Method for producing alcohol by use of a tripeptidyl peptidase. WO2016065238A1; 2016.
Christensen JE, Dudley EG, Pederson JA, Steele JL. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1999;76:217–46.
Article
CAS
PubMed
Google Scholar
Wu J-H, Wang Z, Xu S-Y. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochem. 2008;43:480–7.
Article
CAS
Google Scholar
Piper MDW, Hong SP, Eißing T, Sealey P, Dawes IW. Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients. FEMS Yeast Res. 2002;2:59–71.
Article
CAS
PubMed
Google Scholar
Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, Pelletier E, Gouyvenoux M, Barbe V, Salanoubat M, et al. Clostridium sticklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. BMC Genomics. 2010;11:555.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alföldi L, Raskó I, Kerekes E. l-Serine deaminase of Escherichia coli. J Bacteriol. 1968;96:1512–8.
PubMed
PubMed Central
Google Scholar
Bornaes C, Petersen JG, Holmberg S. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases. Genetics. 1992;131:531–9.
CAS
PubMed
PubMed Central
Google Scholar
Awano N, Wada M, Mori H, Nakamori S, Takagi H. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol. 2005;71:4149–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newton WA, Snell EE. Catalytic properties of tryptophanase, a multifunctional pyridoxal phosphate enzyme. Proc Natl Acad Sci USA. 1964;51:382–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert MP, Neuhaus FC. Factors affecting the level of alanine racemase in Escherichia coli. J Bacteriol. 1972;109:1156–61.
CAS
PubMed
PubMed Central
Google Scholar
Siranosian KJ, Ireton K, Grossman AD. Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis. J Bacteriol. 1993;175:6789–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudolph FB, Fromm HJ. The purification and properties of aspartase from Escherichia coli. Arch Biochem Biophys. 1971;147:92–8.
Article
CAS
PubMed
Google Scholar
Rollan G, de Nadra MM, de Ruiz Holgado AP, Oliver G. Aspartate metabolism in Lactobacillus murinus cnrs 313. J Gen Appl Microbiol. 1985;31:403–9.
Article
CAS
Google Scholar
Cedar H, Schwartz JH. Localization of the two l-asparaginases in anaerobically grown Escherichia coli. J Biol Chem. 1967;242:3753–5.
CAS
PubMed
Google Scholar
Marcus M, Halpern YS. The metabolic pathway of glutamate in Escherichia coli K-12. Biochimica et Biophysica Acta (BBA). 1969;177:314–20.
Article
CAS
Google Scholar
Miller SM, Magasanik B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol. 1990;172:4927–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mäntsälä P, Zalkin H. Active subunits of Escherichia coli glutamate synthase. J Bacteriol. 1976;126:539–41.
PubMed
PubMed Central
Google Scholar
Abrahamson JL, Baker LG, Stephenson JT, Wood JM. Proline dehydrogenase from Escherichia coli K12. Eur J Biochem. 2005;134:77–82.
Article
Google Scholar
Sawers G. The anaerobic degradation of l-serine and l-threonine in enterobacteria: networks of pathways and regulatory signals. Arch Microbiol. 1998;171:1–5.
Article
CAS
PubMed
Google Scholar
Magasanik B, Kaminskas E, Kimhi Y. Histidine degradation (Bacillus subtilis). In: Tabor H, Tabor CW, editors. Methods in enzymology, vol. 17. New York: Academic Press; 1971. p. 45–6.
Google Scholar
Cunin R, Glansdorff N, Piérard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986;50:314–52.
CAS
PubMed
PubMed Central
Google Scholar
Hutson S. Structure and function of branched chain aminotransferases. In: Moldave K, editor. Progress in nucleic acid research and molecular biology. New York: Academic Press; 2001. p. 175–206.
Google Scholar
Massey LK, Sokatch JR, Conrad RS. Branched-chain amino acid catabolism in bacteria. Bacteriol Rev. 1976;40:42–54.
CAS
PubMed
PubMed Central
Google Scholar
London J, Goldberg ME. The tryptophanase from Escherichia coli K-12: I. Purification, physical properties, and quaternary structure. J Biol Chem. 1972;247:1566–70.
CAS
PubMed
Google Scholar
Fitzpatrick PF. Mechanism of aromatic amino acid hydroxylation. Biochem. 2003;42:14083–91.
Article
CAS
Google Scholar
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol. 2005;187:7500–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Numa S, Ishimura Y, Nakazawa T, Okazaki T, Hayaishi O. Enzymic studies on the metabolism of glutarate in Pseudomonas. J Biol Chem. 1964;239:3915–26.
CAS
PubMed
Google Scholar
Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stickland LH. Studies in the metabolism of the strict anaerobes (Genus Clostridium): the reduction of proline by Cl. sporogenes. Biochem J. 1935;29:288–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandeaux J, Sandeaux R, Gavach C, Grib H, Sadat T, Belhocine D, Mameri N. Extraction of amino acids from protein hydrolysates by electrodialysis. J Chem Technol Biotechnol. 1999;71:267–73.
Article
Google Scholar
de Hollanda e Vasconcellos AM, Neto ALCS, Grassiano DM, de Oliveira CPH. Adsorption chromatography of phenylalanine. Biotechnol Bioeng. 1989;33:1324–9.
Article
PubMed
Google Scholar
Könst PM, Turras PMCCD, Franssen MCR, Scott EL, Sanders JPM. Stabilized and immobilized Bacillus subtilis arginase for the biobased production of nitrogen containing chemicals. Adv Synth Catal. 2010;352:1493–502.
Article
CAS
Google Scholar
Könst PM, Franssen MCR, Scott EL, Sanders JPM. Stabilized and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chem. 2011;13:1167–74.
Article
CAS
Google Scholar
Ben-Bassat A, Sariaslani FS, Huang LL, Patnaik R, Lowe DJ. Methods for the preparation of para-hydroxycinnamic acid and cinnamic acid at alkaline pH. US8003356B2. US; 2011.
Shen Y, Zhao L, Li Y, Zhang L, Shi G. Synthesis of β-alanine from l-aspartate using l-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett. 2014;36:1681–6.
Article
CAS
PubMed
Google Scholar
Li N, Chou H, Xu Y. Improved cadaverine production from mutant Klebsiella oxytoca lysine decarboxylase. Eng Life Sci. 2015;16:299–305.
Article
CAS
Google Scholar
Oh YH, Kang K-H, Kwon MJ, Choi JW, Joo JC, Lee SH, Yang Y-H, Song BK, Kim I-K, Yoon K-H, et al. Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. J Ind Microbiol Biotechnol. 2015;42:1481–91.
Article
CAS
PubMed
Google Scholar
Pukin AV, Boeriu CG, Scott EL, Sanders JPM, Franssen MCR. An efficient enzymatic synthesis of 5-aminovaleric acid. J Mol Catal B Enzym. 2010;65:58–62.
Article
CAS
Google Scholar
Lammens TM, De Biase D, Franssen MCR, Scott EL, Sanders JPM. The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chem. 2009;11:1562–7.
Article
CAS
Google Scholar
Hossain GS, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2014;169:112–20.
Article
CAS
PubMed
Google Scholar
Ödman P, Wellborn WB, Bommarius AS. An enzymatic process to α-ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase. Tetrahedron Asymmetry. 2004;15:2933–7.
Article
CAS
Google Scholar
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W. Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed. 2012;51:9156–9.
Article
CAS
Google Scholar
Busto E, Richter N, Grischek B, Kroutil W. Biocontrolled formal inversion or retention of l-α-amino acids to enantiopure (R)- or (S)-hydroxyacids. Chem A Eur J. 2014;20:11225–8.
Article
CAS
Google Scholar
Fuchs M, Tauber K, Sattler J, Lechner H, Pfeffer J, Kroutil W, Faber K. Amination of benzylic and cinnamic alcohols via a biocatalytic, aerobic, oxidation-transamination cascade. RSC Adv. 2012;2:6262–5.
Article
CAS
Google Scholar
Khelifa N, Butel M-J, Rimbault A. Synthesis of 2-hydroxy acid from 2-amino acid by Clostridium butyricum. Bioorg Med Chem Lett. 1998;8:3429–34.
Article
CAS
PubMed
Google Scholar
Pollegioni L, Motta P, Molla G. l-Amino acid oxidase as biocatalyst: a dream too far? Appl Microbiol Biotechnol. 2013;97:9323–41.
Article
CAS
PubMed
Google Scholar
Alexandre F-R, Pantaleone DP, Taylor PP, Fotheringham IG, Ager DJ, Turner NJ. Amine–boranes: effective reducing agents for the deracemisation of d,l-amino acids using l-amino acid oxidase from Proteus myxofaciens. Tetrahedron Lett. 2002;43:707–10.
Article
CAS
Google Scholar
Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y, Liao JC. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol. 2011;29:346.
Article
CAS
PubMed
Google Scholar
Surette MG, Bassler BL. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA. 1998;95:7046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huo Y-X, Wernick DG, Liao JC. Toward nitrogen neutral biofuel production. Curr Opin Biotechnol. 2012;23:406–13.
Article
CAS
PubMed
Google Scholar
Liu F, Wu W, Tran-Gyamfi MB, Jaryenneh JD, Zhuang X, Davis RW. Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Microb Cell Fact. 2017;16:192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikami Y, Yoneda H, Tatsukami Y, Aoki W, Ueda M. Ammonia production from amino acid-based biomass-like sources by engineered Escherichia coli. AMB Express. 2017;7:83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choi K-Y, Wernick DG, Tat CA, Liao JC. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng. 2014;23:53–61.
Article
CAS
PubMed
Google Scholar
Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010;9:859–68.
Article
CAS
Google Scholar
Deepchand K. System for the production of electricity, leaf protein and single cell protein from sugar cane tops and leaves. Sol Energy. 1985;35:477–82.
Article
CAS
Google Scholar
Voss I, Steinbüchel A. Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16. Metab Eng. 2006;8:66–78.
Article
CAS
PubMed
Google Scholar
Diniz Simone C, Voss I, Steinbüchel A. Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng. 2006;93:698–717.
Article
PubMed
CAS
Google Scholar
Okafor N. Modern industrial microbiology and biotechnology. Enfield: Science Publishers; 2007.
Google Scholar
Ivanov K, Stoimenova A, Obreshkova D, Saso L. Biotechnology in the production of pharmaceutical industry ingredients: amino acids. Biotechnol Biotechnol Equip. 2013;27:3620–6.
Article
CAS
Google Scholar
Black SN, Davey RJ. Crystallisation of amino acids. J Cryst Growth. 1988;90:136–44.
Article
CAS
Google Scholar
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185.
Article
CAS
PubMed
Google Scholar
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev. 2013;42:6491–533.
Article
CAS
PubMed
Google Scholar
Cheng J, Ding L, Xia A, Lin R, Li Y, Zhou J, Cen K. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresour Technol. 2015;179:13–9.
Article
CAS
PubMed
Google Scholar
Sangavai C, Chellapandi P. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: an insight into model-driven systems engineering. Biotechnol Rep. 2017;16:32–43.
Article
CAS
Google Scholar
Liu J, Zhou J, Wang L, Ma Z, Zhao G, Ge Z, Zhu H, Qiao J. Improving nitrogen source utilization from defatted soybean meal for nisin production by enhancing proteolytic function of Lactococcus lactis F44. Sci Rep. 2017;7:6189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol. 1991;57:893–900.
CAS
PubMed
PubMed Central
Google Scholar
Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness P-C, Yu J. Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels. 2014;7:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen J-P, Penttilä M, Richard P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact. 2013;12:82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niu D, Tian K, Prior BA, Wang M, Wang Z, Lu F, Singh S. Highly efficient l-lactate production using engineered Escherichia coli with dissimilar temperature optima for l-lactate formation and cell growth. Microb Cell Fact. 2014;13:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol. 2003;14:454–9.
Article
CAS
PubMed
Google Scholar
Hanai T, Atsumi S, Liao JC. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol. 2007;73:7814–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol. 2012;157:633–40.
Article
CAS
PubMed
Google Scholar
Saxena R, Anand P, Saran S, Isar J, Agarwal L. Microbial production and applications of 1, 2-propanediol. Indian J Microbiol. 2010;50:2–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Straathof AJ, Sie S, Franco TT, Van der Wielen LA. Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol. 2005;67:727–34.
Article
CAS
PubMed
Google Scholar
Walther T, François JM. Microbial production of propanol. Biotechnol Adv. 2016;34:984–96.
Article
CAS
PubMed
Google Scholar
Saini M, Li S-Y, Wang ZW, Chiang C-J, Chao Y-P. Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnol Biofuels. 2016;9:1–10.
Article
CAS
Google Scholar
Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85:651–7.
Article
CAS
PubMed
Google Scholar
Ku JT, Simanjuntak W, Lan EI. Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli. Biotechnol Biofuels. 2017;10:291.
Article
PubMed
PubMed Central
Google Scholar
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011;7:445.
Article
CAS
PubMed
Google Scholar
Lee SJ, Lee D-Y, Kim TY, Kim BH, Lee J, Lee SY. Metabolic engineering of Escherichia coli for enhanced production of succinic acid based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol. 2005;71:7880–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl Environ Microbiol. 2015;81:8037–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Seo H-M, Bhatia SK, Song H-S, Kim J-H, Jeon J-M, Choi K-Y, Kim W, Yoon J-J, Kim Y-G. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep. 2017;7:39768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12:70–9.
Article
CAS
PubMed
Google Scholar
Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol. 2016;82:2709–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raj K, Partow S, Correia K, Khusnutdinova AN, Yakunin AF, Mahadevan R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab Eng Commun. 2018;6:28–32.
Article
PubMed
PubMed Central
Google Scholar
Kang Z, Gong X. Biosynthesis of glucaric acid with microbial cell factories. J Microb Biotechnol. 2016;5:36–8.
CAS
Google Scholar
Chae TU, Ko Y-S, Hwang K-S, Lee SY. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab Eng. 2017;41:82–91.
Article
CAS
PubMed
Google Scholar
Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W. Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng. 2011;13:648–55.
Article
CAS
PubMed
Google Scholar
Lin J-H, Lee M-C, Sue Y-S, Liu Y-C, Li S-Y. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production. Appl Microbiol Biotechnol. 2017;101:6419–30.
Article
CAS
PubMed
Google Scholar
Tseng IT, Chen Y-L, Chen C-H, Shen Z-X, Yang C-H, Li S-Y. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli. Metab Eng. 2018;47:445–52.
Article
CAS
PubMed
Google Scholar