Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol. 2011;22:337–43.
Article
CAS
Google Scholar
Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31:1575–84.
Article
CAS
Google Scholar
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia. Biotechnol Bioeng. 2008;101:209–28.
Article
CAS
Google Scholar
Schiel-Bengelsdorf B, Montoya J, Linder S, Dürre P. Butanol fermentation. Environ Technol. 2013;34:1691–710.
Article
CAS
Google Scholar
Sauer M. Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiol Lett. 2016;363:fnw134.
Article
Google Scholar
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J. 2011;11:1348–67.
Article
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9.
Article
CAS
Google Scholar
Sun C, Zhang S, Xin F, Shanmugam S, Wu YR. Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. Biotechnol Biofuels. 2018;11:42.
Article
Google Scholar
Ryosuke Y, Tomohisa H, Akihiko K. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv. 2013;31:754–63.
Article
CAS
Google Scholar
Liao Z, Zhang Y, Luo S, Suo Y, Zhang S, Wang J. Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. J Biotechnol. 2017;252:1–10.
Article
CAS
Google Scholar
Youn SH, Lee KM, Kim KY, Lee SM, Woo HM, Um Y. Effective isopropanol–butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424. Biotechnol Biofuels. 2016;9:230.
Article
CAS
Google Scholar
Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung Y, Papoutsakis ET, Bennett GN, Lee SY. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation. Appl Environ Microbiol. 2011;78:1416–23.
Article
CAS
Google Scholar
Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung Y. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol–butanol–ethanol fuel mixture. Biotechnol Prog. 2013;29:1083–8.
Article
CAS
Google Scholar
Dürre P. Biobutanol: an attractive biofuel. Biotechnol J. 2007;2:1525–34.
Article
CAS
Google Scholar
Shaheen R, Shirley M, Jones DT. Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J Mol Microbiol Biotechnol. 2000;2:115–24.
PubMed
CAS
Google Scholar
Shanmugam S, Sun C, Zeng X, Wu YR. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol. 2018;256:543–7.
Article
CAS
Google Scholar
Jiang YJ, Xin FX, Lu JS, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M. State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol. 2017;245(Pt B):1498–506.
Article
CAS
Google Scholar
Dusséaux S, Croux C, Soucaille P, Meynial-Salles I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng. 2013;18:1–8.
Article
CAS
Google Scholar
Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng. 2009;11:284–91.
Article
CAS
Google Scholar
Gone F, Bao G, Zhao C, Zhang Y, Li Y, Dong H. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum. Appl Microbiol Biotechnol. 2016;100:1523–9.
Article
CAS
Google Scholar
Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels. 2012;5:44.
Article
CAS
Google Scholar
Survase SA, Jurgens G, Heiningen AV, Granstrom T. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol. 2011;91:1305–13.
Article
CAS
Google Scholar
Ng ZR, Takahashi K, Liu Z. Isolation, characterization and evaluation of hyper 2-propanol producing bacteria from Singapore environment. World J Microbiol Biotechnol. 2013;29:1059–65.
Article
CAS
Google Scholar
Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M. Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels. 2017;10:118.
Article
Google Scholar
Wang T, Chen X, Han J, Ma S, Wang J, Li X, Zhang H, Liu Z, Yang Y. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH). Int J Biol Macromol. 2016;88:385–91.
Article
CAS
Google Scholar
Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol. 2015;184:379–85.
Article
CAS
Google Scholar
Cai D, Dong Z, Wang Y, Chen C, Li P, Qin P, Wang Z, Tan T. Co-generation of microbial lipid and bio-butanol from corn cob bagasse in an environmentally friendly biorefinery process. Bioresour Technol. 2016;216:345–51.
Article
CAS
Google Scholar
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact. 2017;16:82.
Article
Google Scholar
Grimmler C, Held C, Liebl W, Ehrenreich A. Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose. J Biotechnol. 2010;150:315–23.
Article
CAS
Google Scholar
Gu Y, Li J, Zhang L, Chen J, Niu LX, Yang YL, Yang S, Jiang HW. Improvement of d-xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol. 2009;143:284–7.
Article
CAS
Google Scholar
Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from d-xylose mother liquid. Metab Eng. 2012;14:569–78.
Article
CAS
Google Scholar
Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S. Confirmation and elimination of d-xylose metabolism bottlenecks in d-glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of d-glucose, d-xylose, and arabinose. App Env Microbiol. 2011;77:7886–95.
Article
CAS
Google Scholar
Vinuselvi P, Minkyung K, Sungkuk L, Cheolmin G. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep. 2012;45:59–70.
Article
CAS
Google Scholar
Xin F, Wu YR, He J. Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol. 2014;80:4771–8.
Article
CAS
Google Scholar
Volesky B, Szczesny T. Bacterial conversion of pentose sugars to acetone and butanol. Adv Biochem Eng Biotechnol. 1983;27:101–17.
PubMed
CAS
Google Scholar
Zeikus JG. Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol. 1980;34:423–64.
Article
CAS
Google Scholar
Gottschalk G. Bacterial metabolism. 2nd ed. New York: Springer; 1986. p. 1–380.
Google Scholar
Cynkin MA, Delwiche EA. Metabolism of pentoses by Clostridia. I. Enzymes of ribose dissimilation in extracts of Clostridium perfringens. J Bacteriol. 1958;75:331–4.
PubMed
PubMed Central
CAS
Google Scholar
Cynkin MA, Gibbs M. Metabolism of pentose by clostridia. II. The fermentation of C14-labeled pentoses by Clostridium perfringens, Clostridium beijerinckii, and Clostridium butylicum. J Bacteriol. 1958;75:335–8.
PubMed
PubMed Central
CAS
Google Scholar
Dobson R, Gray V, Rumbold K. Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol. 2012;39:217–26.
Article
CAS
Google Scholar
Malaviya A, Jiang YS, Lee SY. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol. 2012;93:1485–94.
Article
CAS
Google Scholar
Wischral D, Zhang J, Cheng C, Lin M, De Souza LM, Pessoa FL, Pereira NJ, Yang ST. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: process optimization and metabolic engineering. Bioresour Technol. 2016;212:100–10.
Article
CAS
Google Scholar
Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth. Biotechnol Biofuels. 2015;8:227–45.
Article
CAS
Google Scholar
Gallardo R, Alves M, Rodrigues LR. Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum. N Biotechnol. 2017;34:59–67.
Article
CAS
Google Scholar
Sabra W, Groeger C, Sharma PN, Zeng AP. Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation. Appl Microbiol Biotechnol. 2014;98:4267–76.
Article
CAS
Google Scholar
Xin F, Wang C, Dong W, Zhang W, Wu H, Ma J, Jiang M. Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides. Biotechnol Biofuels. 2016;9:220.
Article
CAS
Google Scholar
Phillips JR, Atiyeh HK, Tanner RS, Torre JR, Saxena J, Wilkins MR, Huhnke RL. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol. 2015;190:114–21.
Article
CAS
Google Scholar
Li N, Yang J, Chai C, Yang S, Jiang W, Gu Y. Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. J Biotechnol. 2015;211:44–5.
Article
CAS
Google Scholar
Bruant G, Lévesque MJ, Peter C, Guiot SR, Masson L. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS ONE. 2010;5:e13033.
Article
CAS
Google Scholar
Dong H, Zhao C, Zhang T, Zhu H, Lin Z, Tao W, Zhang Y, Li Y. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab Eng. 2017;44:284–92.
Article
CAS
Google Scholar
Saini M, Lin LJ, Chiang CJ, Chao YP. Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose–xylose mixture. J Agric Food Chem. 2017;65:10040–7.
Article
CAS
Google Scholar
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals. Adv Biochem Eng Biotechnol. 2018;162:175–215.
PubMed
Google Scholar
Shi S, Si T, Liu Z, Zhang H, Ang EL, Zhao H. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Sci Rep. 2016;6:25675.
Article
CAS
Google Scholar
Jiang Y, Guo D, Lu J, Dürre P, Dong W, Yan W, Zhang W, Ma J, Jiang M, Xin F. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol Biofuels. 2018;11:89.
Article
Google Scholar
Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Bioresour Technol. 2003;89:17–34.
Article
CAS
Google Scholar
Zhang YH. Production of biofuels and biochemical by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. 2015;33:1467–83.
Article
CAS
Google Scholar
Bormann S, Baer ZC, Sreekumar S, Kuchenreuther JM, Dean TF, Blanch HW, Clark DS. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metab Eng. 2014;25:124–30.
Article
CAS
Google Scholar
Sreekumar S, Baer ZC, Pazhamalai A, Gunbas G, Grippo A, Blanch HW, Clark DS, Toste FD. Production of an acetone–butanol–ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat Protoc. 2015;10:528–37.
Article
CAS
Google Scholar
Van den Berg C, Heeres AS, van der Wielen LA, Straathof AJ. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate. Biotechnol Bioeng. 2013;110:137–42.
Article
CAS
Google Scholar
Xin F, Basu A, Yang KL, He J. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour Technol. 2016;202:214–9.
Article
CAS
Google Scholar
Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone–butanol–ethanol into high value-added bioproducts. Crit Rev Biotechnol. 2017;14:1–12.
Google Scholar