Akbari F, Eskandani M, Khosroushahi AY. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol. 2014. https://doi.org/10.1007/s11274-014-1714-0.
Article
PubMed
Google Scholar
Bernaerts TMM, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM. The potential of microalgae and their biopolymers as structuring ingredients in food: a review. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.107419.
Article
PubMed
Google Scholar
Camacho F, Macedo A, Malcata F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar Drugs. 2019;17(6):312.
Article
CAS
Google Scholar
Rösch C, Roßmann M, Weickert S. Microalgae for integrated food and fuel production. GCB Bioenergy. 2019. https://doi.org/10.1111/gcbb.12579.
Article
Google Scholar
Rodolfi L, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009. https://doi.org/10.1002/bit.22033.
Article
PubMed
Google Scholar
Siaut M, et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011. https://doi.org/10.1186/1472-6750-11-7.
Article
PubMed
PubMed Central
Google Scholar
Chen HH, Jiang JG. Lipid accumulation mechanisms in auto- and heterotrophic microalgae. J Agric Food Chem. 2017;65:8099–110.
Article
CAS
Google Scholar
Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010. https://doi.org/10.1126/science.1189003.
Article
PubMed
Google Scholar
Hibberd DJ. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc. 1981. https://doi.org/10.1111/j.1095-8339.1981.tb00954.x.
Article
Google Scholar
Hodgson PA, Henderson RJ, Sargent JR, Leftley JW. Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture—I. The growth cycle. J Appl Phycol. 1991. https://doi.org/10.1007/BF00003699.
Article
Google Scholar
Ma Y, Wang Z, Yu C, Yin Y, Zhou G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol. 2014. https://doi.org/10.1016/j.biortech.2014.06.047.
Article
PubMed
Google Scholar
Gill I, Valivety R. Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol. 1997. https://doi.org/10.1016/S0167-7799(97)01076-7.
Article
PubMed
Google Scholar
Lubián L. Nannochloropsis gaditana sp. nov., una nueva Eustigmatophyceae marina. Lazaroa. 1982. https://doi.org/10.5209/lazaroa.12040.
Article
Google Scholar
Andersen RA, Brett RW, Potter D, Sexton JP. Phylogeny of the Eustigmatophyceae based upon 18 s rDNA, with emphasis on Nannochloropsis. Protist. 1998. https://doi.org/10.1016/S1434-4610(98)70010-0.
Article
PubMed
Google Scholar
Basso S, et al. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem i. Biochim Biophys Acta Bioenerg. 2014. https://doi.org/10.1016/j.bbabio.2013.11.019.
Article
Google Scholar
Radakovits R, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat. Commun. 2012. https://doi.org/10.1038/ncomms1688.
Article
PubMed
PubMed Central
Google Scholar
Carpinelli CE, et al. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant. 2014;7:323–35.
Article
Google Scholar
Verruto J, et al. Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci USA. 2018. https://doi.org/10.1073/pnas.1718193115.
Article
PubMed
Google Scholar
Simionato D, et al. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell. 2013. https://doi.org/10.1128/EC.00363-12.
Article
PubMed
PubMed Central
Google Scholar
Formighieri C, Franck F, Bassi R. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol. 2012. https://doi.org/10.1016/j.jbiotec.2012.02.021.
Article
PubMed
Google Scholar
Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009. https://doi.org/10.1016/j.plantsci.2009.06.005.
Article
Google Scholar
Perin G, et al. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production. Biotechnol Biofuels. 2015;8:1–13.
Article
Google Scholar
Cazzaniga S, et al. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels. 2014. https://doi.org/10.1186/s13068-014-0157-z.
Article
PubMed
PubMed Central
Google Scholar
Jeong J, Baek K, Kirst H, Melis A, Jin ES. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg. 2017. https://doi.org/10.1016/j.bbabio.2016.10.007.
Article
PubMed
Google Scholar
Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A. Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol. 2012. https://doi.org/10.1104/pp.112.206672.
Article
PubMed
PubMed Central
Google Scholar
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015;82:449–65.
Article
CAS
Google Scholar
Liguori N, Roy LM, Opacic M, Durand G, Croce R. Regulation of light harvesting in the green alga chlamydomonas reinhardtii: the c-terminus of lhcsr is the knob of a dimmer switch. J Am Chem Soc. 2013. https://doi.org/10.1021/ja4107463.
Article
PubMed
Google Scholar
Ballottari M, et al. Identification of ph-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J Biol Chem. 2016. https://doi.org/10.1074/jbc.M115.704601.
Article
PubMed
PubMed Central
Google Scholar
Janssen JH, Wijffels RH, Barbosa MJ. Lipid production in Nannochloropsis gaditana during nitrogen starvation. Biology (Basel). 2019. https://doi.org/10.3390/biology8010005.
Article
PubMed
PubMed Central
Google Scholar
Ajjawi I, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol. 2017. https://doi.org/10.1038/nbt.3865.
Article
PubMed
Google Scholar
Kang NK, et al. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol Bioeng. 2019. https://doi.org/10.1002/bit.26894.
Article
PubMed
PubMed Central
Google Scholar
Kirst H, Formighieri C, Melis A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim Biophys Acta Bioenerg. 2014. https://doi.org/10.1016/j.bbabio.2014.07.009.
Article
Google Scholar
Malkin S, Armond PA, Mooney HA, Fork DC. Photosystem II photosynthetic unit sizes from fluorescence induction in leaves. Plant Physiol. 1981. https://doi.org/10.1104/pp.67.3.570.
Article
PubMed
PubMed Central
Google Scholar
Bailleul B, Cardol P, Breyton C, Finazzi G. Electrochromism: a useful probe to study algal photosynthesis. Photosynth Res. 2010;106:179–89.
Article
CAS
Google Scholar
Cao S, et al. A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Lett. 2013. https://doi.org/10.1016/j.febslet.2012.12.031.
Article
PubMed
PubMed Central
Google Scholar
Chukhutsina VU, Fristedt R, Morosinotto T, Croce R. Photoprotection strategies of the alga Nannochloropsis gaditana. Biochim Biophys Acta Bioenerg. 2017. https://doi.org/10.1016/j.bbabio.2017.05.003.
Article
PubMed
Google Scholar
Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods. 2009. https://doi.org/10.1016/j.mimet.2009.01.001.
Article
PubMed
Google Scholar
Simionato D, et al. Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol. 2011. https://doi.org/10.1016/j.biortech.2011.02.100.
Article
PubMed
Google Scholar
Alboresi A, et al. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol. 2016. https://doi.org/10.1104/pp.16.00599.
Article
PubMed
PubMed Central
Google Scholar
Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics. 2008. https://doi.org/10.1186/1471-2105-9-393.
Article
PubMed
PubMed Central
Google Scholar
Chiu CC, Chen LJ, Su PH, Li H. Evolution of chloroplast J proteins. PLoS One. 2013. https://doi.org/10.1371/journal.pone.0070384.
Article
PubMed
PubMed Central
Google Scholar
Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C. Palmitoylation in plants. Plant Signal Behav. 2013. https://doi.org/10.4161/psb.25209.
Article
PubMed
PubMed Central
Google Scholar
Moummou H, Kallberg Y, Tonfack LB, Persson B, van der Rest B. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biol. 2012. https://doi.org/10.1186/1471-2229-12-219.
Article
PubMed
PubMed Central
Google Scholar
Inoue-Kashino N, et al. S4 protein Sll1252 is necessary for energy balancing in photosynthetic electron transport in Synechocystis sp. PCC 6803. Biochemistry. 2011. https://doi.org/10.1021/bi101077e.
Article
PubMed
Google Scholar
Li Y, Xu M. CCT family genes in cereal crops: a current overview. Crop J. 2017. https://doi.org/10.1016/j.cj.2017.07.001.
Article
Google Scholar
Zhang J, et al. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice. J Integr Agric. 2017. https://doi.org/10.1016/s2095-3119(17)61724-6.
Article
PubMed
PubMed Central
Google Scholar
Lu Y, et al. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnol Biofuels. 2014. https://doi.org/10.1186/1754-6834-7-81.
Article
PubMed
PubMed Central
Google Scholar
Klaus D, et al. Digalactosyldiacylglycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol. 2002. https://doi.org/10.1104/pp.010780.
Article
PubMed
PubMed Central
Google Scholar
Polle JEW, Kanakagiri SD, Melis A. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta. 2003. https://doi.org/10.1007/s00425-002-0968-1.
Article
PubMed
Google Scholar
Kirst H, García-Cerdán JG, Zurbriggen A, Melis A. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol. 2012. https://doi.org/10.1104/pp.111.189910.
Article
PubMed
PubMed Central
Google Scholar
DallOsto L, et al. Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnol Biofuels. 2019;12:1–17.
Article
CAS
Google Scholar
Beacham TA, Sweet JB, Allen MJ. Large scale cultivation of genetically modified microalgae: a new era for environmental risk assessment. Algal Res. 2017. https://doi.org/10.1016/j.algal.2017.04.028.
Article
Google Scholar
Liang J, Wen F, Liu J. Transcriptomic and lipidomic analysis of an EPA-containing Nannochloropsis sp. PJ12 in response to nitrogen deprivation. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-41169-2.
Article
PubMed
PubMed Central
Google Scholar
Dormann P, Hoffmann-Benning S, Balbo I, Benning C. Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell. 1995. https://doi.org/10.1105/tpc.7.11.1801.
Article
PubMed
PubMed Central
Google Scholar
Meneghesso A, et al. Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana. Photosynth Res. 2016. https://doi.org/10.1007/s11120-016-0297-z.
Article
PubMed
Google Scholar
Huete-Ortega M, et al. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnol Biofuels. 2018. https://doi.org/10.1186/s13068-018-1061-8.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann M, Marxen K, Schulz R, Vanselow KH. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar Drugs. 2010. https://doi.org/10.3390/md8092526.
Article
PubMed
PubMed Central
Google Scholar
Dianursanti AG, Putri DN. Biodiesel synthesis from Nannochloropsis oculata and Chlorella vulgaris through transesterification process using NaOH/zeolite heterogeneous catalyst. in IOP Conference Series: Earth and Environmental Science. 2018. Doi: https://doi.org/10.1088/1755-1315/105/1/012053.
Kilian O, Benemann CSE, Niyogi KK, Vick B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA. 2011. https://doi.org/10.1073/pnas.1105861108.
Article
PubMed
Google Scholar
Naduthodi MIS, et al. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol Biofuels. 2019. https://doi.org/10.1186/s13068-019-1401-3.
Article
PubMed
PubMed Central
Google Scholar
Guillard RRL, Ryther JH. Studies of marine planktonic diatoms, I, Cyclotella nanna (Hustedt) and Detonula convervacea (Cleve). Microbiol: Can. J; 1962.
Google Scholar
Kuhlgert S, et al. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open photosynQ network. R Soc Open Sci. 2016. https://doi.org/10.1098/rsos.160592.
Article
PubMed
PubMed Central
Google Scholar
Perozeni F, Stella GR, Ballottari M. LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19010155.
Article
PubMed
PubMed Central
Google Scholar
Lagarde D, Beuf L, Vermaas W. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol. 2000. https://doi.org/10.1128/aem.66.1.64-72.2000.
Article
PubMed
PubMed Central
Google Scholar
Scythe—a Bayesian adapter trimmer (version 0.994 BETA). https://github.com/vsbuffalo/scythe.
Joshi N, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). 2011. https://github.com/najoshi/sickle.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010. https://doi.org/10.1093/bioinformatics/btp698.
Article
PubMed
PubMed Central
Google Scholar
Picard Tools. Broad Institute. http://broadinstitute.github.io/picard.
Depristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011. https://doi.org/10.1038/ng.806.
Article
PubMed
PubMed Central
Google Scholar
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing–free bayes—variant calling—longranger. arXiv Prepr. arXiv1207.3907 (2012). doi:arXiv:1207.3907 (q-bio.GN).
Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014. https://doi.org/10.1007/978-1-4939-0554-6_12.
Article
PubMed
PubMed Central
Google Scholar
Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012. https://doi.org/10.4161/fly.19695.
Article
PubMed
PubMed Central
Google Scholar
Conesa A, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005. https://doi.org/10.1093/bioinformatics/bti610.
Article
PubMed
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0021800.
Article
PubMed
PubMed Central
Google Scholar