Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual review. Plant Biology. 2003;54:519–46.
Article
CAS
Google Scholar
Lee KH, Singh AP, Park BD, Wi SG, Bae HJ. Variability in the distribution of middle Lamella lignin in secondary vascular tissues of kenaf stems. IAWA Journal. 2014;35(1):61–8.
Article
Google Scholar
Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M. Within tree variability of lignin composition in Populus. Wood Sci Technol. 2008;42(8):649–61.
Article
CAS
Google Scholar
del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, Ralph J. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain Chem Eng. 2020;8(13):4997–5012.
Article
CAS
Google Scholar
Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016;42:40–53.
Article
CAS
PubMed
Google Scholar
Davison BH, Parks J, Davis MF, Donohoe BS. Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. New York: Wiley; 2013. p. 23–38.
Chang H, Sarkanen V. Species variation in lignin: effect of species on the rate of kraft delignification. Tappi J. 1973;56:132–4.
CAS
Google Scholar
Magaton AD, Colodette JL, Gouvea ADG, Gomide JL, Muguet MCD, Pedrazzi C. Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi J. 2009;8(8):32–9.
CAS
Google Scholar
Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD. Significant increases in pulping efficiency in C4H–F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem. 2003;51(21):6178–83.
Article
CAS
PubMed
Google Scholar
Tsutsumi Y, Kondo R, Sakai K, Imamura H. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung. 1995;49(5):423–8.
Article
CAS
Google Scholar
Chiang VL, Puumala RJ, Takeuchi H, Eckert RE. Comparison of softwood and hardwood kraft pulping. Tappi J. 1988;71(9):173–6.
CAS
Google Scholar
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, et al. Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci. 2011;108(15):6300–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP. Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol. 2006;130(1–3):427–35.
Article
Google Scholar
Ohlsson JA, Hallingbäck HR, Jebrane M, Harman-Ware AE, Shollenberger T, Decker SR, et al. Genetic variation of biomass recalcitrance in a natural Salix viminalis (L.) population. Biotechnol Biofuels. 2019;12(1):135.
Article
PubMed
PubMed Central
Google Scholar
Ohlsson JA, Harman-Ware AE, Sandgren M, Schnürer A. Biomass recalcitrance in willow under two biological conversion paradigms: Enzymatic hydrolysis and anaerobic digestion. BioEnergy Res. 2019.
Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, et al. Syringyl lignin production in conifers: proof of concept in a Pine tracheary element system. Proc Natl Acad Sci. 2015;112(19):6218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolando C, Monties B, Lapierre C. Thioacidolysis. In: Lin S, Dence C, editors. Methods in lignin chemistry. Springer Series in Wood Science. Berlin Heidelberg: Springer; 1992. p. 334–49.
Google Scholar
Harman-Ware AE, Foster C, Happs RM, Doeppke C, Meunier K, Gehan J, et al. Quantitative analysis of lignin monomers by a thioacidolysis method tailored for higher-throughput analysis. Biotechnol J. 2016;11:1268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ralph J, Grabber JH. Dimeric β-ether thioacidolysis products resulting from incomplete ether cleavage. Holzforschung. 1996;50(5):425–8.
Article
CAS
Google Scholar
Lapierre C, Pollet B, Monties B, Rolando C. Thioacidolysis of spruce lignin: GC-MS analysis of the main dimers recovered after Raney nickel desulphuration. Holzforschung. 1991;45(1):61–8.
Article
CAS
Google Scholar
Sjöström E. Lignin. In: Wood chemistry: fundamentals and applications. 2nd edition ed: Elsevier Science; 1993. p. 71–90.
Saito K, Watanabe Y, Shirakawa M, Matsushita Y, Imai T, Koike T, et al. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant J. 2012;69(3):542–52.
Article
CAS
PubMed
Google Scholar
Lapierre C. Application of new methods for the investigation of lignin structure. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, editors. Forage Cell Wall Structure and Digestibility. Madison, WI: American Society of Agronomy; 1993. p. 133–66.
Google Scholar
Li M, Foster C, Kelkar S, Pu Y, Holmes D, Ragauskas A, et al. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnol Biofuels. 2012;5(1):38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabber JH, Quideau S, Ralph J. p-Coumaroylated syringyl units in maize lignin: Implications for β-ether cleavage by thioacidolysis. Phytochemistry. 1996;43:1189–94.
Article
CAS
Google Scholar
Ibarra D, Chávez MI, Rencoret J, Del Río JC, Gutiérrez A, Romero J, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis—gas chromatography/mass spectrometry study. J Agric Food Chem. 2007;55:3477–90.
Article
CAS
PubMed
Google Scholar
Sarkanen KV, Hergert HL. Classification and distribution. In: Sarkanen KV, Ludwig CH, editors. Lignins: occurrence, formation, structure and reactions. New York: Wiley-Interscience; 1971. p. 43–94.
Google Scholar
Anderson EM, Stone ML, Katahira R, Reed M, Muchero W, Ramirez KJ, et al. Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nature Commun. 2019;10(1):2033.
Article
CAS
Google Scholar
Decker SR, Harman-Ware AE, Happs RM, Wolfrum EJ, Tuskan GA, Kainer D, et al. High throughput screening technologies in biomass characterization. Front Energy Res. 2018. https://doi.org/10.3389/fenrg.2018.00120.
Article
Google Scholar
Harman-Ware AE, Macaya-Sanz D, Abeyratne CR, Doepkke C, Haiby K, Tuskan GA, et al. Accurate determination of genotypic variance of cell wall characteristics of a Populus trichocarpa pedigree using high-throughput pyrolysis-molecular beam mass spectrometry. Biotechnol Biofuels. 2020. https://doi.org/10.21203/rs.3.rs-23478/v1.
Article
Google Scholar
Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M. High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. In: Mielenz JR, editor. Biofuels: methods and protocols. Totowa, NJ: Humana Press; 2009. p. 169–83.
Chapter
Google Scholar
Penning BW, Sykes RW, Babcock NC, Dugard CK, Klimek JF, Gamblin D, et al. Validation of pyMBMS as a high-throughput screen for lignin abundance in lignocellulosic biomass of grasses. BioEnergy Res. 2014;7(3):899–908.
Article
CAS
Google Scholar
Decker SR, Sykes RW, Turner GB, Lupoi JS, Doepkke C, Tucker MP, et al. High-throughput screening of recalcitrance variations in lignocellulosic biomass: total lignin, lignin monomers, and enzymatic sugar release. JoVE. 2015;103:e53163.
Google Scholar
Choi J-W, Faix O, Meier D. Characterization of residual lignins from chemical pulps of spruce (Picea abies L.) and beech (Fagus sylvatica L.) by analytical pyrolysis–gas chromatography/mass spectrometry. Holzforschung. 2001;55(2):185–92.
Article
CAS
Google Scholar
Genuit W, Boon JJ, Faix O. Characterization of beech milled wood lignin by pyrolysis-gas chromatography-photoionization mass spectrometry. Anal Chem. 1987;59(3):508–13.
Article
CAS
Google Scholar
Yokoi H, Ishida Y, Ohtani H, Tsuge S, Sonoda T, Ona T. Characterization of within-tree variation of lignin components in Eucalyptus camaldulensis by pyrolysis-gas chromatography. Analyst. 1999;124(5):669–74.
Article
CAS
Google Scholar
Rodrigues J, Meier D, Faix O, Pereira H. Determination of tree-to-tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrol. 1999;48(2):121–8.
Article
CAS
Google Scholar
Rodrigues J, Graça J, Pereira H. Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. J Anal Appl Pyrol. 2001;58–59:481–9.
Article
Google Scholar
Evtuguin DV, Neto CP, Silva AM, Domingues PM, Amado FM, Robert D, et al. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J Agric Food Chem. 2001;49(9):4252–61.
Article
CAS
PubMed
Google Scholar
Asmadi M, Kawamoto H, Saka S. The effects of combining guaiacol and syringol on their pyrolysis. Holzforschung. 2012;66(3):323–30.
Article
CAS
Google Scholar
Izumi A, Kuroda K-i. Pyrolysis-mass spectrometry analysis of dehydrogenation lignin polymers with various syringyl/guaiacyl ratios. Rapid Communications in Mass Spectrometry. 1997;11(15):1709–15.
Pu Y, Hallac B, Ragauskas AJ. Plant Biomass Characterization: Application of solution and solid-state NMR spectroscopy. In: Wyman CE, editor. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Chichester: John Wiley & Sons, Ltd.; 2013. p. 369–90.
Chapter
Google Scholar
Ralph J, Marita JM, Ralph SA, Hatfield RD, Lu F, Ede RM, et al. Solution state NMR of lignins. In: Argyropoulos DS, editor., et al., Advances in lignocellulosics characterization. Atlanta, GA: Tappi Press; 1999. p. 55–108.
Google Scholar
Granata A, Argyropoulos DS. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43(6):1538–44.
Article
CAS
Google Scholar
Faix O, Argyropoulos D, Robert D, Neirinck V. Determination of hydroxyl groups in lignins: evaluation of 1H-, 13C-, 31P-NMR FTIR and wet chemical methods. Holzforschung. 1994;48(5):387–94.
Article
CAS
Google Scholar
Meng X, Crestini C, Ben H, Hao N, Pu Y, Ragauskas AJ, et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat Protoc. 2019;14(9):2627–47.
Article
CAS
PubMed
Google Scholar
Argyropoulos DS. Heteronuclear NMR spectroscopy of lignins. In: Heitner C, Dimmel D, Schmidt J, editors. Lignin & lignans; advances in chemistry. Boca Raton, FL: CRC Press; 2010. p. 245–65.
Chapter
Google Scholar
Heikkinen S, Toikka MM, Karhunen PT, Kilpeläinen IA. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. J Am Chem Soc. 2003;125(14):4362–7.
Article
CAS
PubMed
Google Scholar
Lu F, Ralph J. Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J. 2003;35(4):535–44.
Article
CAS
PubMed
Google Scholar
Ralph J, Lu F. Cryoprobe 3D NMR of acetylated ball-milled pine cell walls. Org Biomol Chem. 2004;2(19):2714–5.
Article
CAS
PubMed
Google Scholar
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell
wall characterization using solution-state 2D NMR. Nat Protoc. 2012;7(9):1579–89.
Article
CAS
PubMed
Google Scholar
Capanema EA, Balakshin MY, Kadla JF. Quantitative characterization of a hardwood milled wood lignin by Nuclear Magnetic Resonance spectroscopy. J Agric Food Chem. 2005;53(25):9639–49.
Article
CAS
PubMed
Google Scholar
Hu K, Westler WM, Markley JL. Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H–13C HSQC (HSQC0). J Am Chem Soc. 2011;133(6):1662–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng K, Sorek H, Zimmermann H, Wemmer DE, Pauly M. Solution-State 2D NMR Spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-Ethyl-3-methylimidazolium acetate solvent. Anal Chem. 2013;85(6):3213–21.
Article
CAS
PubMed
Google Scholar
Villaverde JJ, Li J, Ek M, Ligero P, de Vega A. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J Agric Food Chem. 2009;57(14):6262–70.
Article
CAS
PubMed
Google Scholar
Talebi Amiri M, Bertella S, Questell-Santiago YM, Luterbacher JS. Establishing lignin structure-upgradeability relationships using quantitative 1H–13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy. Chemical Sci. 2019;10(35):8135–42.
Article
CAS
Google Scholar
Manders WF. Solid-state 13C NMR determination of the syringyl/guaiacyl ratio in hardwoods. Holzforschung. 1987;41(1):13–8.
Article
CAS
Google Scholar
González-Vila FJ, Almendros G, del Rio JC, Martı́n F, Gutiérrez A, Romero JD. Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and CP/MAS 13C-NMR spectrometry. J Anal Appl Pyrol. 1999;49(1):295–305.
Martínez AT, González AE, Valmaseda M, Dale BE, Lambregts MJ, Haw JF. Solid-state NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung Int J Biol Chem Phys Technol Wood. 1991;45(s1):49–54.
Google Scholar
Hawkes GE, Smith CZ, Utley JHP, Vargas RR, Viertler H. A comparison of solution and solid state 13C NMR spectra of lignins and lignin model compounds. Holzforschung Int J Biol Chem Phys Technol Wood. 1993;47(4):302–12.
CAS
Google Scholar
Fidalgo ML, Terron MC, Martinez AT, Gonzalez AE, Gonzalez-Vila FJ, Galletti GC. Comparative study of fractions from alkaline extraction of wheat straw through chemical degradation, analytical pyrolysis, and spectroscopic techniques. J Agric Food Chem. 1993;41(10):1621–6.
Article
CAS
Google Scholar
Martınez AT, Almendros G, González-Vila FJ, Fründ R. Solid-state spectroscopic analysis of lignins from several Austral hardwoods. Solid State Nucl Magn Reson. 1999;15(1):41–8.
Article
PubMed
Google Scholar
Newman RH, Tauwhare SEK, Scheele S, Te Kanawa R. Leaf-fiber lignins of Phormium varieties compared by solid-state 13C NMR spectroscopy. Holzforschung. 2005;59(2):147–52.
Article
CAS
Google Scholar
Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding S-Y, et al. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci. 2011;4(12):4962–71.
Article
CAS
Google Scholar
Davis MF, Schroeder HR, Maciel GE. Solid-state 13C nuclear magnetic resonance studies of wood decay. I. White rot decay of Colorado blue spruce. Holzforschung. 1994;48(2):99–105.
Article
CAS
Google Scholar
Davis MF, Schroeder HA, Maciel GE. Solid-state 13C Nuclear Magnetic Resonance studies of wood decay. II. White rot decay of paper birch. Holzforschung. 1994;48(3):186–92.
Article
CAS
Google Scholar
Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Commun. 2019;10(1):347.
Article
CAS
Google Scholar
Davis MF, Schroeder HR, Maciel GE. Solid-state 13C nuclear magnetic resonance studies of wood decay I. White rot decay of Colorado blue spruce. Berlin/New York: Walter de Gruyter; 1994.
Google Scholar
Davis MF, Schroeder HA, Maciel GE. Solid-State 13C Nuclear Magnetic Resonance Studies of Wood Decay. II. White Rot Decay of Paper Birch. Holzforschung Int J Biol Chem Phys Technol Wood. 1994;48(3):186–92.
CAS
Google Scholar
Harman-Ware AE, Happs RM, Davison BH, Davis MF. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. Biotechnol Biofuels. 2017;10(1):281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Addison B, Onofrei D, Stengel D, Blass B, Brenneman B, Ayon J, et al. Spider prey-wrapping silk is an α-helical coiled-coil/β-sheet hybrid nanofiber. Chem Commun. 2018;54(76):10746–9.
Article
CAS
Google Scholar
Domján A, Bajdik J, Pintye-Hódi K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules. 2009;42(13):4667–73.
Article
CAS
Google Scholar
Fergus BJ, Goring DAI. The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung. 1970;24(4):118.
Article
CAS
Google Scholar
Donaldson LA. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry. 2001;57(6):859–73.
Article
CAS
PubMed
Google Scholar
Perras FA, Luo H, Zhang X, Mosier NS, Pruski M, Abu-Omar MM. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR. The J Phys Chem A. 2017;121(3):623–30.
Article
CAS
PubMed
Google Scholar
Mehring M. Principles of high resolution NMR in solids. New York: Springer-Verlag; 1983. p. 356.
Book
Google Scholar
Kolodziejski W, Klinowski J. Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev. 2002;102(3):613–28.
Article
CAS
PubMed
Google Scholar
Johnson RL, Schmidt-Rohr K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J Magn Reson. 2014;239:44–9.
Article
CAS
PubMed
Google Scholar
Li Y, Akiyama T, Yokoyama T, Matsumoto Y. NMR assignment for diaryl ether structures (4–O–5 Structures) in pine wood lignin. Biomacromol. 2016;17(6):1921–9.
Article
CAS
Google Scholar
Yue F, Lu F, Ralph S, Ralph J. Identification of 4-O-5-units in softwood lignins via definitive lignin models and NMR. Biomacromol. 2016;17(6):1909–20.
Article
CAS
Google Scholar
Aoki D, Nomura K, Hashiura M, Imamura Y, Miyata S, Terashima N, et al. Evaluation of ring-5 structures of guaiacyl lignin in Ginkgo biloba L. using solid- and liquid-state 13C NMR difference spectroscopy. Holzforschung. 2019;73(12):1083–92.
Article
CAS
Google Scholar
Gao X, Laskar DD, Zeng J, Helms GL, Chen S. A 13C CP/MAS-based nondegradative method for lignin content analysis. ACS Sustain Chem Eng. 2015;3(1):153–62.
Article
CAS
Google Scholar
Sparrman T, Svenningsson L, Sahlin-Sjövold K, Nordstierna L, Westman G, Bernin D. A revised solid-state NMR method to assess the crystallinity of cellulose. Cellulose. 2019;26(17):8993–9003.
Article
CAS
Google Scholar
Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose. 2009;16(4):641–7.
Article
CAS
Google Scholar
Yue F, Lu F, Sun R-C, Ralph J. Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J Agric Food Chem. 2012;60(4):922–8.
Article
CAS
PubMed
Google Scholar
Peersen OB, Wu XL, Kustanovich I, Smith SO. Variable-amplitude cross-polarization MAS NMR. J Magn Reson. 1993;104(3):334–9.
Article
CAS
Google Scholar
Takegoshi K, Nakamura S, Terao T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett. 2001;344(5):631–7.
Article
CAS
Google Scholar