Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.
Article
CAS
PubMed
Google Scholar
Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev. 2011;40:5266–81.
Article
CAS
PubMed
Google Scholar
Ahorsu R, Medina F, Constantí M. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies. 2018;11(12):3366.
Article
CAS
Google Scholar
Leff B, Ramankutty N, Foley JA. Geographic distribution of major crops across the world. Global Biogeochem Cy. 2004;18(1).
Parent B, Leclere M, Lacube S, Semenov MA, Welcker C, Martre P, Tardieu F. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. PNAS. 2018;115(42):10642–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nascimento MS, Santana ALBD, Maranhão CA, Oliveira LS, Bieber L. Phenolic extractives and natural resistance of wood; 2013.
Gilbert HJ. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol. 2010;153(2):444–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P. Unusual fungal niches. Mycologia. 2011;103(6):1161–74.
Article
CAS
PubMed
Google Scholar
Chundawat SPS, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol. 2011;2:121–45.
Article
CAS
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.
Article
CAS
PubMed
Google Scholar
Bajpai P. Chapter 2-Xylan: occurrence and structure. In: Xylanolytic enzymes. Amsterdam: Academic Press; 2014. pp. 9–18.
Holtzapple MT. Hemicelluloses. In: Caballero B, Finglas P, Trugo L, editors. Encyclopedia of food sciences and nutrition (Second Edition). Oxford: Academic Press; 2003. p. 3060–71.
Chapter
Google Scholar
York WS, Vanhalbeek H, Darvill AG, Albersheim P. Structural analysis of xyloglucan oligosaccharides by 1H-NNR spectroscopy and fast-atom-bombardment mass-spectrometry. Carbohyd Polym. 1990;200:9–31.
Article
CAS
Google Scholar
dos Santos MA, Grenha A. Chapter Seven—polysaccharide nanoparticles for protein and peptide delivery: exploring less-known materials. In: Donev R, editor. Advances in protein chemistry and structural biology. vol. 98. Academic Press; 2015. pp. 223–261.
Willför S, Sundberg K, Tenkanen M, Holmbom B. Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohyd Polym. 2008;72(2):197–210.
Article
CAS
Google Scholar
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–77.
Article
CAS
PubMed
Google Scholar
Kashyap DR, Vohra PK, Chopra S, Tewari R. Applications of pectinases in the commercial sector: a review. Bioresource Technol. 2001;77(3):215–27.
Article
CAS
Google Scholar
Dekker RFH. Biodegradation of the Hemicelluloses. In: Higuchi T, editor. Biosynthesis and biodegradation of wood components. Academic Press; 1985; pp. 505–533.
Bonnin E, Pelloux J. Pectin degrading enzymes. In: Kontogiorgos V, editor. Pectin: technological and physiological properties. Cham: Springer International Publishing; 2020. p. 37–60.
Chapter
Google Scholar
Chandel AK, da Silva SS, Singh OV. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenerg Res. 2013;6(1):388–401.
Article
CAS
Google Scholar
Foston M, Ragauskas A. Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol. 2012;8:191–208.
Article
CAS
Google Scholar
Meng XZ, Ragauskas AJ. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotech. 2014;27:150–8.
Article
CAS
PubMed
Google Scholar
Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. 2008;9(6):433–43.
Article
CAS
PubMed
Google Scholar
de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS. Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res. 2013;6(2):564–79.
Article
CAS
Google Scholar
Meineke T, Manisseri C, Voigt CA. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS ONE. 2014;9(8):e103580.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(W1):W445–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes AM, Ferreira EX, Moreira LRS. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol. 2018;125(3):632–45.
Article
CAS
PubMed
Google Scholar
Mueller GM, Bills GF. Introduction. In: Biodiversity of fungi. Burlington: Academic Press. 2004; pp. 1–4.
Blackwell M. The fungi: 1, 2, 3, … 5.1 million species? Am J Bot. 2011;98(3):426–38.
Article
PubMed
Google Scholar
Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the fungi, vol. 10. Wallingford, UK: CABI; 2008.
Google Scholar
O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJN, Lysøe E, Rehner SA, Aoki T, et al. Phylogenetic analyses of RPB1 and RPB2 support a middle cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol. 2013;52:20–31.
Article
PubMed
CAS
Google Scholar
Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994;7(4):479–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollenweber H, Reinking O. Die Fusarien: Ihre Beschreibung, Schadwirkung und Bekämpfung. Berlin: P. Parey; 1935.
Google Scholar
Snyder WC, Hansen HN. The species concept in Fusarium with reference to section martiella. Am J Bot. 1941;28(9):738–42.
Article
Google Scholar
Summerell BA, Laurence MH, Liew ECY, Leslie JF. Biogeography and phylogeography of Fusarium: a review. Fungal Divers. 2010;44(1):3–13.
Article
Google Scholar
Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol. 2016;17(2):146–58.
Article
PubMed
Google Scholar
Al-Hatmi AMS, Hagen F, Menken SBJ, Meis JF, de Hoog GS. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015. Emerg Microbes Infec 2016;5.
O’Donnell K, Al-Hatmi AMS, Aoki T, Brankovics B, Cano-Lira JF, Coleman JJ, de Hoog GS, Di Pietro A, Frandsen RJN, Geiser DM, et al. No to Neocosmospora: phylogenomic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere. 2020;5(5):e00810-00820.
Article
PubMed
PubMed Central
Google Scholar
Muhammed M, Anagnostou T, Desalermos A, Kourkoumpetis TK, Carneiro HA, Glavis-Bloom J, Coleman JJ, Mylonakis E. Fusarium infection report of 26 cases and review of 97 cases from the literature. Medicine. 2013;92(6):305–16.
Article
PubMed
PubMed Central
Google Scholar
Leslie JF, Summerell BA. The Fusarium laboratory manual. Ames, Iowa, USA: Blackwell Publishing; 2006.
Book
Google Scholar
Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou SG, et al. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. Plos Genet. 2009;5(8):e1000618.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim JA, Jeon J, Park SY, Kim KT, Choi G, Lee HJ, Kim Y, Yang HS, Yeo JH, Lee YH et al. Genome sequence of an endophytic fungus, Fusarium solani JS-169, which has antifungal activity. Microbiol Resour Ann. 2017; 5(42).
Brandt SC, Ellinger B, van Nguyen T, Thi QD, Van Nguyen G, Baschien C, Yurkov A, Hahnke RL, Schafer W, Gand M. A unique fungal strain collection from Vietnam characterized for high performance degraders of bioecological important biopolymers and lipids. PLoS ONE. 2018;13(8):e0202695.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV. Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod. 2012;35(1):274–9.
Article
CAS
Google Scholar
Bhatia Y, Mishra S, Bisaria VS. Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002;22(4):375–407.
Article
CAS
PubMed
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of β-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technol. 2013;127:500–7.
Article
CAS
Google Scholar
Gao J, Wakarchuk W. Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484. J Bacteriol. 2014;196(23):4103–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glass NL, Schmoll M, Cate JHD, Coradetti S. Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol. 2013;67:477–98.
Article
CAS
PubMed
Google Scholar
van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bey M, Zhou SM, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (Family GH61) from Podospora anserina. Appl Environ Microb. 2013;79(2):488–96.
Article
CAS
Google Scholar
Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. Acs Chem Biol. 2011;6(12):1399–406.
Article
CAS
PubMed
Google Scholar
Konno N, Ishida T, Igarashi K, Fushinobu S, Habu N, Samejima M, Isogai A. Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei. Febs Lett. 2009;583(8):1323–6.
Article
CAS
PubMed
Google Scholar
Chen JY, Guo XN, Zhu M, Chen C, Li DC. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Biotechnol Biofuels 2019;12.
Prado-Martinez M, Anzaldo-Hernández J, Becerra-Aguilar B, Palacios-Juarez H, Vargas-Radillo JD, Renteria-Urquiza M. Characterization of maize leaves and of sugarcane bagasse to elaborate of a mixed cellulose pulp. Madera Bosques. 2012;18(3):37–51.
Google Scholar
Attia M, Stepper J, Davies GJ, Brumer H. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. Febs J. 2016;283(9):1701–19.
Article
CAS
PubMed
Google Scholar
Foumani M, Vuong TV, Master ER. Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Biotechnol Bioeng. 2011;108(10):2261–9.
Article
CAS
PubMed
Google Scholar
Lo Leggio L, Simmons TJ, Poulsen JCN, Frandsen KEH, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6.
Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA. A family of starch-active polysaccharide monooxygenases. PNAS. 2014;111(38):13822–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poutanen K, Sundberg M, Korte H, Puls J. Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biot. 1990;33(5):506–10.
Article
CAS
Google Scholar
Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 2012;5.
Zhao ZT, Liu HQ, Wang CF, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14:274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, Squina FM, Buckeridge M, Goldman GH, Oliveira JVD. Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS ONE. 2015;10(6):e0129275.
Article
PubMed
PubMed Central
CAS
Google Scholar
dos Santos HB, Bezerra TMS, Pradella JGC, Delabona P, Lima D, Gomes E, Hartson SD, Rogers J, Couger B, Prade R. Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass. Amb Express. 2016;6.
Couturier M, Navarro D, Favel A, Haon M, Lechat C, Lesage-Meessen L, Chevret D, Lombard V, Henrissat B, Berrin JG. Fungal secretomics of ascomycete fungi for biotechnological applications. Mycosphere. 2016;7(10):1546–53.
Article
Google Scholar
Benoit I, Coutinho PM, Schols HA, Gerlach JP, Henrissat B, de Vries RP. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics. 2012;13:321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5.
Article
CAS
PubMed
Google Scholar
Shraddha SR, Sehgal S, Kamthania M, Kumar A. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 2011;2011:217861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol. 2012;57(3):221–7.
Article
CAS
Google Scholar
Scully ED, Hoover K, Carlson J, Tien M, Geib SM. Analysis of Fusarium solani isolated from the longhorned beetle, Anoplophora glabripennis. PLoS ONE. 2012;7(4):e32990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vuong TV, Foumani M, MacCormick B, Kwan R, Master ER. Direct comparison of glucooligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability. Sci Rep. 2016;6.
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE. 2012;7(6):e28742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidl V, Huemer B, Seiboth B, Kubicek CP. A Complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. Febs J. 2005;272(22):5923–39.
Article
CAS
PubMed
Google Scholar
Schneider WDH, Goncalves TA, Uchima CA, Couger MB, Prade R, Squina FM, Dillon AJP, Camassola M. Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 2016;9.
Machovič M, Janeček S. Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia. 2008;63(6):1057–68.
Article
CAS
Google Scholar
Rocha VAL, Maeda RN, Pereira N, Kern MF, Elias L, Simister R, Steele-King C, Gomez LD, McQueen-Mason SJ. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol Progr. 2016;32(2):327–36.
Article
CAS
Google Scholar
Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels. 2013;6(1):172.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delabona PD, Cota J, Hoffmam ZB, Paixão DAA, Farinas CS, Cairo JPLF, Lima DJ, Squina FM, Ruller R, Pradella JGD. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-l-arabinofuranosidase. Bioresour Technol. 2013;131:500–7.
Article
CAS
Google Scholar
Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, de la Fuente G, Falcon MA. Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. Fems Microbiol Ecol. 1996;21(3):213–9.
Article
CAS
Google Scholar
Mitra J, Mukherjee PK, Kale SP, Murthy NBK. Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegradation. 2001;12(4):235–45.
Article
CAS
PubMed
Google Scholar
Wang K, Chen J, Sun S-N, Sun R-C. Chapter 6 - Steam Explosion. In: Pandey A, Negi S, Binod P, Larroche C, editors. Pretreatment of biomass. Amsterdam: Elsevier; 2015. p. 75–104.
Chapter
Google Scholar
Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci. 2014;7(2):163–73.
Article
CAS
Google Scholar
Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technol. 2016;199:76–82.
Article
CAS
Google Scholar
Sun SN, Sun SL, Cao XF, Sun RC. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technol. 2016;199:49–58.
Article
CAS
Google Scholar
CSH Protocols: YPD media. Cold Spring Harb Protoc 2010, 2010(9):pdb.rec12315.
Leach J, Lang BR, Yoder OC. Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus. J Gen Microbiol. 1982;128:1719–29.
Google Scholar
Raper KB, Thom C. A manual of the penicillia. Baltimore: Williams and Wilkons; 1949.
Google Scholar
Mohseni M, Norouzi H, Hamedi J, Roohi A. Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. Int J Mol Cell Med. 2013;2(2):64–71.
PubMed
PubMed Central
Google Scholar
Mandels M, Reese ET. Induction of cellulase in fungi by cellobiose. J Bacteriol. 1960;79(6):816–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
Google Scholar
Richards E, Reichardt M, Rogers S. Preparation of genomic DNA from plant tissue. Current protocols in molecular biology 1994, Chapter 2.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. Orlando, Florida: Academic Press; 1990. p. 315–22.
Google Scholar
Brankovics B, Zhang H, van Diepeningen AD, van der Lee TAJ, Waalwijk C, de Hoog GS. GRAbB: selective assembly of genomic regions, a new niche for genomic research. Plos Comput Biol. 2016;12(6):e1004753.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye YZ, Choi JH, Tang HX. RAPSearch: a fast protein similarity search tool for short reads. BMC Bioinform 2011;12.
Zhao YA, Tang HX, Ye YZ. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics. 2012;28(1):125–6.
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–30.
Article
CAS
PubMed
Google Scholar
Hahnke RL, Stackebrandt E, Meier-Kolthoff JP, Tindall BJ, Huang SX, Rohde M, Lapidus A, Han J, Trong S, Haynes M et al. High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2(T) (DSM 21788(T)), a valuable source of polysaccharide decomposing enzymes. Stand Genomic Sci 2015;10.
Zhang H, Yohe T, Huang L, Entwistle S, Wu PZ, Yang ZL, Busk PK, Xu Y, Yin YB. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46(W1):W95–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandels M, Weber J. The production of cellulases. Am Chem Soc. 1969;95:391.
CAS
Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680.
Article
CAS
PubMed
Google Scholar
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2007;1:2856–60.
Article
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426.
Article
CAS
Google Scholar