Blunden J, Arndt DS. State of the climate in 2015. Bull Amer Meteor. 2016;97:1–275.
Article
Google Scholar
Fatma S, Hameed A, Noman M, Ahmed T, Shahid M, Tariq M, Sohail I, Tabassum R. Lignocellulosic biomass: asustainable bioenergy source for the future. Protein Pept Lett. 2018;25:148–63.
Article
CAS
PubMed
Google Scholar
Castro E, Nieves IU, Mullinnix MT, Sagues WJ, Hoffman RW, Fernández-Sandoval MT, Tian Z, Rockwood DL, Tamang B, Ingram LO. Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl Energy. 2014;125:76–83.
Article
CAS
Google Scholar
Crawford JT, Shan CW, Budsberd E, Morgan H, Bura R, Gustafson R. Hydrocarbon bi-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnol Biofuels. 2016;9:141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ko JH, Kim WC, Im JH, Kim JY, Patterson S, Han KH. Pathway-specific genetic pretreatment strategy to improve bioenergy feedstock. Biomass Bioenergy. 2018;115:253–9.
Article
CAS
Google Scholar
Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science. 2010;329:790–2.
Article
CAS
PubMed
Google Scholar
Wyman CE. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ. 1999;24:189–226.
Article
Google Scholar
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454:841–5.
Article
CAS
PubMed
Google Scholar
Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant biol. 2009;60:165–82.
Article
CAS
PubMed
Google Scholar
Kaylen M, Van Dyne DL, Choi YS, Blase M. Economic feasibility of producing ethanol from lignocellulosic feedstocks. Bioresour Technol. 2000;72:19–32.
Article
CAS
Google Scholar
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: Exploring the molecular mechanisms of tree growth. Tree Physiol. 2021;41:657–78.
Article
PubMed
Google Scholar
Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol. 2004;135:254–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in tree: environmental control and molecular mechanisms. Plant Cell Environ. 2012;35:1707–28.
Article
CAS
PubMed
Google Scholar
Ridoutt BG, Pharis RP, Sands R. Fibre length and gibberellins A1 and A20 are decreased in Eucalyptus globulus by acylcyclohexanedione injected into stem. Physiol Plant. 1996;96:559–66.
Article
CAS
Google Scholar
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008;53:488–504.
Article
CAS
PubMed
Google Scholar
Zhuang W, Gao Z, Wang L, Zhong W, Ni Z, Zhang Z. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. J Exp Bot. 2013;64:4953–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrera E, Bou J, Garcia-Martinez JL, Prat S. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J. 2000;22:247–56.
Article
CAS
PubMed
Google Scholar
Huang SS, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol. 1998;118:773–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park EJ, Kim HT, Choi YI, Lee C, Nguyen VP, Jeon HW, Cho JS, Funada R, Pharis RP, Kurepin LV, Ko JH. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiol. 2015;35:1264–77.
Article
CAS
PubMed
Google Scholar
Xiao YH, Li DM, Yin MH, Li XB, Zhang M, Wang YJ, Dong J, Zhao J, Luo M, Luo XY, Hou L, Hu L, Pei Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant physiol. 2010;167:829–37.
Article
CAS
PubMed
Google Scholar
Eriksson ME, Israelsson M, Olsson O, Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol. 2000;18:784–8.
Article
CAS
PubMed
Google Scholar
Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, Ko JH. Developing xylem-preferential expression of PdGA20ox a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J. 2016;14:1161–70.
Article
CAS
PubMed
Google Scholar
Mauriat M, Petterle A, Bellini C, Moritz T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J. 2014;78:372–84.
Article
CAS
PubMed
Google Scholar
Ibáñez C, Kozarewa I, Johansson M, Ögren E, Rohde A, Eriksson ME. Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus Trees. Plant Physiol. 2010;153:1823–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gyllenstrand N, Karlgren A, Clapham D, Holm K, Hall A, Gould PD, Källman T, Lagercrantz U. No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). Plant Cell Physiol. 2014;55:535–50.
Article
CAS
PubMed
Google Scholar
Shim D, Ko JH, Kim WC, Wang Q, Keathley DE, Han KH. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Hortic Res. 2014;26:14059.
Article
CAS
Google Scholar
Maurya JP, Triozzi PM, Bhalerao RP, Perales M. Environmentally sensitive molecular switches drive poplar phenology. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01873.
Article
PubMed
PubMed Central
Google Scholar
Lagercrantz U. At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot. 2009;60:2501–15.
Article
CAS
PubMed
Google Scholar
Michelson IH, Ingvarsson PK, Robinson KM, Edlund E, Eriksson ME, Nilsson O, Jansson S. Autumn senescence in aspen is not triggered by day length. Physiol Pant. 2018;162:123–34.
CAS
Google Scholar
Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus Trees. PLoS ONE. 2014;9:e86217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 control shoot elongation. New Phytol. 2015;205:1288–95.
Article
CAS
PubMed
Google Scholar
Chundawat SPS, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem. 2011;2:121–45.
CAS
Google Scholar
Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. New Phytol. 2019;221:1703–23.
Article
CAS
PubMed
Google Scholar
Ko JH, Jeon HW, Kim WC, Kim JY, Han KH. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Ann Bot. 2014;114:1099–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19:2776–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 2009;60:649–65.
Article
CAS
PubMed
Google Scholar
Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J. 2013;73:26–36.
Article
CAS
PubMed
Google Scholar
McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 2009;50:1950–64.
Article
CAS
PubMed
Google Scholar
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye ZH. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol. 2010;51:1084–90.
Article
CAS
PubMed
Google Scholar
Zhong R, McCarthy RL, Haghighat M, Ye ZH. The Poplar MYB Master Switches Bind to the SMRE Site and Activate the Secondary Wall Biosynthetic Program during Wood Formation. PLoS ONE. 2013;8:e69219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho JS, Jeon HW, Kim MH, Vo TK, Kim J, Park EJ, Choi YI, Lee H, Han KH, Ko JH. Wood forming tissue-specific bicistronic expression of PdGA20ox1 and PtrMYB221 improves both the quality and quantity of woody biomass production in a hybrid poplar. Plant Biotechnol J. 2019;17:1048–57.
Article
CAS
PubMed
Google Scholar
Ryan MD, Drew J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 1994;13:928–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkins JF, Wills NM, Loughran G, Wu CY, Parsawar K, Ryan MD, Wang CH, Nelson CC. A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA. 2007;13:803–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko JH, Kim HT, Hwang ID, Han KH. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. Plant Biotech J. 2012;10:587–96.
Article
CAS
Google Scholar
Duan C, Li X, Gao D, Liu H, Li M. Studies on regulations of endogenous ABA and GA3 in sweet cherry flower buds on dormancy. Acta Hortic Sinica. 2004;31:149–54.
Google Scholar
Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-b-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell. 2011;23:130–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng C, Acheampong AK, Shi Z, Halaly T, Kamiya Y, Ophir R, Galbraith DW, Or E. Distinct gibberellin functions during and after grapevine bud dormancy release. J Exp Bot. 2018;69:1635–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang W, Gao Z, Wen L, Huo X, Cai B, Zhang Z. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic Res. 2015;2:15046.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sumiyoshi M, Nakamura A, Nakamura H, Hakata M, Ichikawa H, Hirochika H, Ishii T, Satoh S, Iwai H. Increase in cellulose accumulation and improvement of saccarification by overexpression of arabinofuranosidase in rice. PLoS ONE. 2013;8:e78269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiser CJ. Cold resistance and injury in woody plants. Science. 1970;169:1269–78.
Article
CAS
PubMed
Google Scholar
Inouye DW. The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett. 2000;3:457–63.
Article
Google Scholar
Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant physiol. 2003;133:462–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
Choi YI, Noh EW, Lee HS, Han MS, Lee JS, Choi KS. An efficient and novel plant selectable marker based on organomercurial resistance. J Plant Biol. 2005;48:351–5.
Article
CAS
Google Scholar
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science. 1985;227:1229–31.
Article
CAS
Google Scholar
Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987;163:16–20.
Article
CAS
PubMed
Google Scholar
Pfaffl MW. Development and validation of an externally standardized quantitative insulin like growth factor-1 (IGF-1) RT-PCR using Light Cyclear SYBR Green I technology. In: Meuer S, Wittwer C, Nakagawara K-I, editors. Rapid cycle real-time PCR. Springer: Heidelberg; 2001. p. 281–91.
Chapter
Google Scholar
Lichtenthaler HK. Chlorophylls and carotenoids—pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–82.
Article
CAS
Google Scholar
Yang F, Mitra P, Loqué D. Engineering secondary cell wall deposition in plants. Plant Biotechnol J. 2013;11:325–35.
Article
CAS
PubMed
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.
Article
CAS
Google Scholar
Mottiar Y, Gierlinger N, Jeremic D, Master ER, Mansfield SD. Atypical lignification in eastern leatherwood (Dirca palustris). New Phytol. 2020;226:704–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD. RNAi-mediated suppression of pcoumaroyl-CoA 3’-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA. 2008;105:4501–6.
Article
CAS
PubMed
PubMed Central
Google Scholar