Meyer M. Rapeseed oil fuel—the crisis-proof home-made eco-fuel. Agrarforschung. 2009;16(7):262–7.
Google Scholar
Emiliani D, Pistocchi M. Biodiesel production from vegetable oils. Ind Sacc Ital. 2006;99:91–8.
CAS
Google Scholar
Pullen J, Saeed K. Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Process Technol. 2015;130:127–35.
Article
CAS
Google Scholar
Wang X, Zheng M, Liu H, Zhang L, Hua W. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnol Biofuels. 2020;13(42).
Giehl RF, Gruber BD, von Wiren N. It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot. 2014;65(3):769–78.
Article
CAS
PubMed
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45(9):1097–102.
Article
CAS
PubMed
Google Scholar
Chen YS, Lo SF, Sun PK, Lu CA, Ho TH, Yu SM. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J. 2015;13(1):105–16.
Article
CAS
PubMed
Google Scholar
Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR, Hanlon MT, et al. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet. 2014;127(11):2293–311.
Article
PubMed
Google Scholar
Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, et al. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci. 2020;292:110380.
Article
CAS
PubMed
Google Scholar
Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct Integr Genomics. 2019;19(1):91–107.
Article
CAS
PubMed
Google Scholar
Wang J, Kuang L, Wang X, Liu G, Dun X, Wang H. Temporal genetic patterns of root growth in Brassica napus L. revealed by a low-cost, high-efficiency hydroponic system. Theor Appl Genet. 2019;132(8):2309–23.
Article
CAS
PubMed
Google Scholar
Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, et al. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics. 2016;17:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song W, Wang B, Hauck AL, Dong X, Li J, Lai J. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol. 2016;58(3):266–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Chen Y, Thomas CL, Ding G, Xu P, Shi D, et al. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res. 2017;24(4):407–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wei J, Li P, Wang Y, Ge Z, Qian J, et al. Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes. 2019;10(10):773.
Article
PubMed Central
CAS
Google Scholar
Hua Y, Zhang D, Zhou T, He M, Ding G, Shi L, et al. Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ. 2016;39(7):1601–18.
Article
CAS
PubMed
Google Scholar
Bernardino KC, Pastina MM, Menezes CB, de Sousa SM, Maciel LS, Carvalho G, et al. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biol. 2019;19(1):87.
Article
PubMed
PubMed Central
Google Scholar
Fan X, Zhang W, Zhang N, Chen M, Zheng S, Zhao C, et al. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor Appl Genet. 2018;131(12):2677–98.
Article
CAS
PubMed
Google Scholar
Gong X, McDonald G. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theor Appl Genet. 2017;130(9):1885–902.
Article
CAS
PubMed
Google Scholar
Islam A, Zhang Y, Anis G, Rani MH, Anley W, Yang Q, et al. Fine mapping and candidate gene analysis of qRN5a, a novel QTL promoting root number in rice under low potassium. Theor Appl Genet. 2021;134(1):213–27.
Article
CAS
PubMed
Google Scholar
Schierholt A, Tietz T, Bienert GP, Gertz A, Miersch S, Becker HC. Root system size response of bzh semi-dwarf oilseed rape hybrids to different nitrogen levels in the field. Ann Bot. 2019;124(6):891–901.
Article
CAS
PubMed
Google Scholar
Sanchez DL, Liu S, Ibrahim R, Blanco M, Lubberstedt T. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci. 2018;268:30–8.
Article
CAS
PubMed
Google Scholar
Zhang H, San ML, Jang SG, Lee JH, Kim NE, Lee AR, et al. Genome-wide association study of root system development at seedling stage in rice. Genes. 2020;11(12):1395.
Article
CAS
PubMed Central
Google Scholar
Liu S, Fan C, Li J, Cai G, Zhou Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet. 2016;1(6):1203–15.
Article
CAS
Google Scholar
Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, et al. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Plant Biotechnol J. 2020;18(6):1472–84.
Article
CAS
PubMed
Google Scholar
Jia Z, Giehl RFH. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat Commun. 2019;10(1):2378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dun X, Tao Z, Wang J, Wang X, Liu G, Wang H. Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Front Plant Sci. 2016;7:1238.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Zou J. RNA-Seq transcriptome analysis of rice primary roots reveals the role of flavonoids in regulating the rice primary root growth. Genes. 2019;10(3):213.
Article
CAS
PubMed Central
Google Scholar
Hey S, Baldauf J, Opitz N, Lithio A, Pasha A, Provart N, et al. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. J Exp Bot. 2017;68(9):2175–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu ZS, Yang QQ, Feng K, Yu X, Xiong AS. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol J. 2020;18(7):1585–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang SG, Kim KH, Lee BM, Moon JC. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Genes Genomics. 2018;40(7):755–66.
Article
CAS
PubMed
Google Scholar
Que F, Wang GL, Li T, Wang YH, Xu ZS, Xiong AS. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Funct Integr Genomics. 2018;18(6):685–700.
Article
CAS
PubMed
Google Scholar
Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, et al. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet. 2017;13(7):e1006889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3.
Article
CAS
PubMed
Google Scholar
Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bagman AM, et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature. 2018;563(7730):259–64.
Article
CAS
PubMed
Google Scholar
Sun CH, Yu JQ, Wen LZ, Guo YH, Sun X, Hao YJ, et al. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. Plant Sci. 2018;266:27–36.
Article
CAS
PubMed
Google Scholar
Chutia R, Abel S, Ziegler J. Iron and phosphate deficiency regulators concertedly control coumarin profiles in Arabidopsis thaliana roots during iron, phosphate, and combined deficiencies. Front Plant Sci. 2019;10:113.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, Yang W, et al. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nat Plants. 2019;5(10):1033–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tominaga-Wada R, Wada T. CPC-ETC1 chimeric protein localization data in Arabidopsis root epidermis. Data Brief. 2018;18:1773–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang K, Yung V, Chiba T, Feldman LJ. Longitudinal patterning in roots: a GATA2-auxin interaction underlies and maintains the root transition domain. Planta. 2018;247(4):831–43.
Article
CAS
PubMed
Google Scholar
Ohtani M, Demura T, Sugiyama M. Arabidopsis root initiation defective1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell. 2013;25(6):2056–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu Y, Zou M, Sun X, He B, Xu X, Liu Y, et al. BASIC PENTACYSTEINE proteins repress ABSCISIC ACID INSENSITIVE4 expression via direct recruitment of the polycomb-repressive complex 2 in Arabidopsis root development. Plant Cell Environ. 2017;58(3):607–21.
CAS
Google Scholar
Pulwicki J, Hobill D. The dynamics of root growth: a geometric model. Bull Math Biol. 2017;79(8):1820–45.
Article
PubMed
Google Scholar
Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, et al. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot. 2016;118(4):655–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas CL, Alcock TD, Graham NS, Hayden R, Matterson S, Wilson L, et al. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol. 2016;16(1):214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Q, Li P, Hu C, Hua H, Li Z, Rong Y, et al. Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J Genet. 2014;93(1):63–78.
Article
CAS
PubMed
Google Scholar
Su Y, Li M, Guo L. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant J. 2018;94(2):315–26.
Article
CAS
PubMed
Google Scholar
Mohler V, Stadlmeier M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet. 2019;60(3–4):291–300.
Article
CAS
PubMed
Google Scholar
Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, et al. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet. 2015;128(6):1175–92.
Article
PubMed
Google Scholar
Su J, Yang X, Zhang F, Wu S, Xiong S, Shi L, et al. Dynamic and epistatic QTL mapping reveals the complex genetic architecture of waterlogging tolerance in chrysanthemum. Planta. 2018;247(4):899–924.
Article
CAS
PubMed
Google Scholar
Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, et al. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS ONE. 2013;8(11):e79305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du B, Wang Q, Sun G, Ren X, Cheng Y, Wang Y, et al. Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Sci Rep. 2019;9(1):18823.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bac-Molenaar JA, Vreugdenhil D, Granier C, Keurentjes JJ. Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. J Exp Bot. 2015;66(18):5567–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muraya MM, Chu J, Zhao Y, Junker A, Klukas C, Reif JC, et al. Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping. Plant J. 2017;89(2):366–80.
Article
CAS
PubMed
Google Scholar
Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, Werner CR, et al. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. Plant Biotechnol J. 2020;18(1):68–82.
Article
CAS
PubMed
Google Scholar
Ohbayashi I, Huang S. Mitochondrial pyruvate dehydrogenase contributes to auxin-regulated organ development. Plant Physiol. 2019;180(2):896–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piacentini D, Falasca G, Canepari S, Massimi L. Potential of PM-selected components to induce oxidative stress and root system alteration in a plant model organism. Environ Int. 2019;132:105094.
Article
CAS
PubMed
Google Scholar
Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem. 2004;279(40):41866–72.
Article
CAS
PubMed
Google Scholar
Kim MJ, Ciani S, Schachtman DP. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant. 2010;3(2):420–7.
Article
CAS
PubMed
Google Scholar
Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, et al. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ. 2013;36(5):1009–18.
Article
CAS
PubMed
Google Scholar
Estornell LH, Landberg K, Cierlik I, Sundberg E. SHI/STY genes affect pre- and post-meiotic anther processes in auxin sensing domains in Arabidopsis. Front Plant Sci. 2018;9:150.
Article
PubMed
PubMed Central
Google Scholar
Renard J, Martínez-Almonacid I, Sonntag A, Molina I, Moya-Cuevas J, Bissoli G, et al. PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell Environ. 2020;43(2):315–26.
Article
CAS
PubMed
Google Scholar
Han S, Fang L, Ren X, Wang W, Jiang J. MPK6 controls H2O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings. New Phytol. 2015;205(2):695–706.
Article
CAS
PubMed
Google Scholar
Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants. 2015;1:15015.
Article
CAS
PubMed
Google Scholar
Maghiaoui A, Bouguyon E, Cuesta C, Perrine-Walker F, Alcon C, Krouk G, et al. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. J Exp Bot. 2020;71(15):4480–94.
Article
CAS
PubMed
Google Scholar
Jacquot A, Chaput V, Mauries A, Li Z, Tillard P, Fizames C, et al. NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana. New Phytol. 2020;228:1038–54.
Article
CAS
PubMed
Google Scholar
Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B, Obolski U, et al. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. Plant J. 2015;82(4):547–55.
Article
CAS
PubMed
Google Scholar
Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, et al. The defense metabolite, allyl glucosinolate, modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway. Front Plant Sci. 2016;7:774.
PubMed
PubMed Central
Google Scholar
Malinovsky FG, Thomsen MF, Nintemann SJ, Jagd LM, Bourgine B, Burow M. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. Elife Sci. 2017;6.
Urbancsok J, Bones AM, Kissen R. Glucosinolate-derived isothiocyanates inhibit Arabidopsis growth and the potency depends on their side chain structure. Int J Mol Sci. 2017;18(11):2372.
Article
PubMed Central
CAS
Google Scholar
Liao P, Lung SC, Chan WL, Bach TJ, Lo C, Chye ML. Overexpression of HMG-CoA synthase promotes Arabidopsis root growth and adversely affects glucosinolate biosynthesis. J Exp Bot. 2020;71(1):272–89.
Article
CAS
PubMed
Google Scholar
Katz E, Bagchi R, Jeschke V, Rasmussen ARM. Diverse Allyl glucosinolate catabolites independently influence rootgrowth and development. Plant Physiol. 2020;183(3):1376–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu L, Wang M, Han B, Tan D, Sun X, Zhang J. Arabidopsis myrosinase genes AtTGG4 and AtTGG5 are root-tip specific and contribute to auxin biosynthesis and root-growth regulation. Int J Mol Sci. 2016;17(6):892.
Article
PubMed Central
CAS
Google Scholar
Ohtani M, Demura T, Sugiyama M. Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis. Plant Cell Physiol. 2010;51(12):2002–12.
Article
CAS
PubMed
Google Scholar
Lan P, Li W, Wen TN, Shiau JY, Wu YC, Lin W, et al. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant physiol. 2011;155(2):821–34.
Article
CAS
PubMed
Google Scholar
Lim CW, Kim JH, Baek W, Kim BS, Lee SC. Functional roles of the protein phosphatase 2C, AtAIP1, in abscisic acid signaling and sugar tolerance in Arabidopsis. Plant Sci. 2012;187:83–8.
Article
CAS
PubMed
Google Scholar
Markakis MN, De Cnodder T, Lewandowski M, Simon D, Boron A, Balcerowicz D, et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 2012;12:208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18(1):40–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy E, Vu LD, Van den Broeck L, Lin Z, Ramakrishna P, van de Cotte B, et al. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J Exp Bot. 2016;67(16):4863–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi M, Umetsu K, Oono Y, Higaki T, Blancaflor EB, Rahman A. Small acidic protein 1 and SCF(TIR)(1) ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots. Plant J. 2017;89(5):940–56.
Article
CAS
PubMed
Google Scholar
Hoagland DR. Optimum nutrient solutions for plants. Science. 1921;52(1354):562–564
Article
Google Scholar
Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet. 2016;129(10):1887–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Yogesh R, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;19:19.
Google Scholar
Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol. 2006;17(2):155–60.
Article
CAS
PubMed
Google Scholar
Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, et al. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J. 2016;14(6):1368–80.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar