Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28:1883–96.
Article
CAS
PubMed
Google Scholar
Cho EJ, Trinh LTP, Song Y, Lee YG, Bae H-J. Bioconversion of biomass waste into high value chemicals. Bioresour Technol. 2020;298:122386.
Article
CAS
PubMed
Google Scholar
Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels. 2019;12:294.
Article
PubMed
PubMed Central
Google Scholar
Yu X, Wei Z, Lu Z, Pei H, Wang H. Activation of lignin by selective oxidation: an emerging strategy for boosting lignin depolymerization to aromatics. Bioresour Technol. 2019;291:121885.
Article
CAS
PubMed
Google Scholar
Weiss R, Guebitz GM, Pellis A, Nyanhongo GS. Harnessing the power of enzymes for tailoring and valorizing lignin. Trends Biotechnol. 2020;38:1215–31.
Article
CAS
PubMed
Google Scholar
Venkatesagowda B. Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biol Rev. 2019;33:190–224.
Article
Google Scholar
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev. 2020;49:5510–60.
Article
CAS
PubMed
Google Scholar
Chen Z, Wan C. Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev. 2017;73:610–21.
Article
CAS
Google Scholar
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41:941–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S. Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol. 2019;56:179–86.
Article
CAS
PubMed
Google Scholar
Asina F, Brzonova I, Voeller K, Kozliak E, Kubatova A, Yao B, et al. Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol. 2016;220:414–24.
Article
CAS
PubMed
Google Scholar
Jensen KA, Houtman CJ, Ryan ZC, Hammel KE. Pathways for extracellular fenton chemistry in the brown rot Basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol. 2001;67:2705–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arantes V, Milagres AMF, Filley TR, Goodell B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol. 2010;38:541–55.
Article
PubMed
CAS
Google Scholar
Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol. 2017;101:5059–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels. 2013;6:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Eltis LD, Bugg TDH. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol. 2013;8:2151–6.
Article
CAS
PubMed
Google Scholar
Martínez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río JC. Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol. 2011;13:96–107.
Article
PubMed
CAS
Google Scholar
Yelle DJ, Kapich AN, Houtman CJ, Lu F, Timokhin VI, Fort RC, et al. A highly diastereoselective oxidant contributes to ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol. 2014;80:7536–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Erven G, Hilgers R, Waard Pd, Gladbeek E-J, van Berkel WJH, Kabel MA. Elucidation of in situ ligninolysis mechanisms of the selective white-rot fungus Ceriporiopsis subvermispora. ACS Sustainable Chem Eng. 2019;7:16757–64.
Article
CAS
Google Scholar
van Erven G, Wang J, Sun P, de Waard P, van der Putten J, Frissen GE, et al. Structural motifs of wheat straw lignin differ in susceptibility to degradation by the white-rot fungus Ceriporiopsis subvermispora. ACS Sustain Chem Eng. 2019;7:20032–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol. 2019;271:462–72.
Article
CAS
PubMed
Google Scholar
Sharma A, Aggarwal NK, Yadav A. Isolation and screening of lignolytic fungi from various ecological niches. Univ J Microbiol Res. 2017;5:25–34.
Article
CAS
Google Scholar
Milenković I, Tomšovský M, Karadžić D, Veselinović M. Decline of Paulownia tomentosa caused by Trametes hirsuta in Serbia. For Pathol. 2018;48:e12438.
Article
Google Scholar
Dhakar K, Pandey A. Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Res. 2013;2013:869062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, et al. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol Biofuels. 2017;10:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asina FNU, Brzonova I, Kozliak E, Kubátová A, Ji Y. Microbial treatment of industrial lignin: successes, problems and challenges. Renew Sustain Energy Rev. 2017;77:1179–205.
Article
CAS
Google Scholar
Ulmer DC, Leisola MSA, Schmidt BH, Fiechter A. Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appl Environ Microbiol. 1983;45:1795–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, et al. Recent advancement in lignin biorefinery: with special focus on enzymatic degradation and valorization. Bioresour Technol. 2019;291:121898.
Article
CAS
PubMed
Google Scholar
Zhang Y, Tang B, Du G. Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Sci Rep. 2017;7:10161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Monjed MK, Achour B, Robson GD, Pittman JK. Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Res. 2021;58:102402.
Article
Google Scholar
Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV. Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS ONE. 2017;12:e0173813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vasina DV, Pavlov AR, Koroleva OV. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol. 2016;16:106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moiseenko KV, Glazunova OA, Savinova OS, Vasina DV, Zherebker AY, Kulikova NA, et al. Relation between lignin molecular profile and fungal exo-proteome during kraft lignin modification by Trametes hirsuta LE-BIN 072. Bioresour Technol. 2021;335:125229.
Article
CAS
PubMed
Google Scholar
Savinova OS, Moiseenko KV, Vavilova EA, Tyazhelova TV, Vasina DV. Properties of two laccases from the Trametes hirsuta 072 multigene family: twins with different faces. Biochimie. 2017;142:183–90.
Article
CAS
PubMed
Google Scholar
Reyes-Rivera J, Terrazas T. Lignin analysis by HPLC and FTIR. Methods Mol Biol. 2017;1544:193–211.
Article
PubMed
Google Scholar
Xu Z, Qin L, Cai M, Hua W, Jin M. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ Sci Pollut Res Int. 2018;25:14171–81.
Article
CAS
PubMed
Google Scholar
Zhu D, Liang N, Zhang R, Ahmad F, Zhang W, Yang B, et al. Insight into depolymerization mechanism of bacterial laccase for lignin. ACS Sustainable Chem Eng. 2020;8:12920–33.
Article
CAS
Google Scholar
Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur IS. Polyhydroxyalkanoate synthesis and characterization: a proteogenomic and process optimization study for biovalorization of industrial lignin. Bioresour Technol. 2021;320:124439.
Article
CAS
PubMed
Google Scholar
Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA. 2014;111:12013–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, et al. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol. 2012;123:682–5.
Article
CAS
PubMed
Google Scholar
Morya R, Kumar M, Singh SS, Thakur IS. Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds. Biotechnol Biofuels. 2019;12:277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravi K, Abdelaziz OY, Nobel M, Garcia-Hidalgo J, Gorwa-Grauslund MF, Hulteberg CP, et al. Bacterial conversion of depolymerized Kraft lignin. Biotechnol Biofuels. 2019;12:56.
Article
PubMed
PubMed Central
Google Scholar
Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, Garcia-Hidalgo J, et al. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34:1318–46.
Article
CAS
PubMed
Google Scholar
Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res. 2014;2:12.
Article
Google Scholar
Ma F, Huang X, Ke M, Shi Q, Chen Q, Shi C, et al. Role of selective fungal delignification in overcoming the saccharification recalcitrance of bamboo culms. ACS Sustainable Chem Eng. 2017;5:8884–94.
Article
CAS
Google Scholar
Ma R, Guo M, Zhang X. Recent advances in oxidative valorization of lignin. Catal Today. 2018;302:50–60.
Article
CAS
Google Scholar
Patil ND, Yao SG, Meier MS, Mobley JK, Crocker M. Selective cleavage of the Cα–Cβ linkage in lignin model compounds via Baeyer-Villiger oxidation. Org Biomol Chem. 2015;13:3243–54.
Article
CAS
PubMed
Google Scholar
Hedenstrom M, Wiklund-Lindstrom S, Oman T, Lu F, Gerber L, Schatz P, et al. Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol Plant. 2009;2:933–42.
Article
PubMed
CAS
Google Scholar
Tarasov D, Leitch M, Fatehi P. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels. 2018;11:269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels. 2018;11:269.
CAS
Google Scholar
Rencoret J, Pereira A, Marques G, del Río JC, Martínez ÁT, Gutiérrez A. A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing Paulownia fortunei (Seem.) Hemsl. Holzforschung. 2018;73:45–54.
Article
CAS
Google Scholar
van Bergen PF, Poole I, Ogilvie TMA, Caple C, Evershed RP. Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:71–9.
Article
PubMed
Google Scholar
Martinez AT, Camarero S, Gutiérrez A, Bocchini P, Galletti GC. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis. J Anal Appl pyrolysis. 2001;58:401–11.
Article
Google Scholar
Lubbers RJM, Dilokpimol A, Visser J, Makela MR, Hilden KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv. 2019;37:107396.
Article
CAS
PubMed
Google Scholar
Shintani N, Shoda M. Decolorization of oxygen-delignified bleaching effluent and biobleaching of oxygen-delignified kraft pulp by non-white-rot fungus Geotrichum candidum Dec 1. J Environ Sci. 2013;25:S164–8.
Article
Google Scholar
Nakagawa Y, Sakamoto Y, Kikuchi S, Sato T, Yano A. A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Microbiol Res. 2010;165:392–401.
Article
CAS
PubMed
Google Scholar
Kirk TK, Croan S, Tien M. Production of multiple ligninases by Phanerochaete chrysosporium effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol. 1986;8:27–32.
Article
CAS
Google Scholar
Wariishi H, Valli K, Gold MH. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem. 1992;267:23688–95.
Article
CAS
PubMed
Google Scholar
Ma J, Yue H, Li H, Zhang J, Zhang Y, Wang X, et al. Selective delignification of poplar wood with a newly isolated white-rot basidiomycete Peniophora incarnata T-7 by submerged fermentation to enhance saccharification. Biotechnol Biofuels. 2021;14:135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, et al. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels. 2016;9:211.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rencoret J, Pereira A, del Río JC, Martínez ÁT, Gutiérrez A. Delignification and saccharification enhancement of sugarcane byproducts by a laccase-based pretreatment. ACS Sustainable Chem Eng. 2017;5:7145–54.
Article
CAS
Google Scholar
Zhao C, Huang J, Yang L, Yue F, Lu F. Revealing structural differences between alkaline and kraft lignins by HSQC NMR. Ind Eng Chem Res. 2019;58:5707–14.
Article
CAS
Google Scholar
Mattsson C, Andersson S-I, Belkheiri T, Åmand L-E, Olausson L, Vamling L, et al. Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoostTM kraft lignin depolymerized in subcritical water. Biomass Bioenerg. 2016;95:364–77.
Article
CAS
Google Scholar
Giummarella N, Pylypchuk IV, Sevastyanova O, Lawoko M. New structures in Eucalyptus kraft lignin with complex mechanistic implications. ACS Sustainable Chem Eng. 2020;8:10983–94.
CAS
Google Scholar