Oleskowicz-Popiel P. Designing reactor microbiomes for chemical production from organic waste. Trends Biotechnol. 2018;36:747–50. https://doi.org/10.1016/j.tibtech.2018.01.002.
Article
CAS
PubMed
Google Scholar
Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol. 2016;50:2796–810. https://doi.org/10.1021/acs.est.5b04847.
Article
CAS
PubMed
Google Scholar
Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O’Malley MA, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019;17:725–41. https://doi.org/10.1038/s41579-019-0255-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contreras-Dávila CA, Carrión VJ, Vonk VR, Buisman CNJ, Strik DPBTB. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Res. 2020;169:1–10. https://doi.org/10.1016/j.watres.2019.115215.
Article
CAS
Google Scholar
Carvajal-Arroyo JM, Candry P, Andersen SJ, Props R, Seviour T, Ganigué R, et al. Granular fermentation enables high rate caproic acid production from solid-free thin stillage. Green Chem R Soc Chem. 2019;21:1330–9. https://doi.org/10.1039/c8gc03648a.
Article
CAS
Google Scholar
Roghair M, Liu Y, Strik DPBTB, Weusthuis RA, Bruins ME, Buisman CJN. Development of an effective chain elongation process from acidified food waste and ethanol into n-caproate. Front Bioeng Biotechnol. 2018;6:1–11. https://doi.org/10.3389/fbioe.2018.00050.
Article
Google Scholar
Chwialkowska J, Duber A, Zagrodnik R, Walkiewicz F, Łężyk M, Oleskowicz-Popiel P. Caproic acid production from acid whey via open culture fermentation—evaluation of the role of electron donors and downstream processing. Bioresour Technol. 2019;279:74–83. https://doi.org/10.1016/j.biortech.2019.01.086.
Article
CAS
PubMed
Google Scholar
Kucek LA, Nguyen M, Angenent LT. Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome. Water Res. 2016;93:163–71. https://doi.org/10.1016/j.watres.2016.02.018.
Article
CAS
PubMed
Google Scholar
Candry P, Radić L, Favere J, Carvajal-Arroyo JM, Rabaey K, Ganigué R. Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Res. 2020. https://doi.org/10.1016/j.watres.2020.116396.
Article
PubMed
Google Scholar
Ge S, Usack JG, Spirito CM, Angenent LT. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environ Sci Technol. 2015;49:8012–21. https://doi.org/10.1021/acs.est.5b00238.
Article
CAS
PubMed
Google Scholar
Yu J, Liao J, Huang Z, Wu P, Zhao M, Liu C, et al. Enhanced anaerobic mixed culture fermentation with anion-exchange resin for caproate production. Processes. 2019;7:1–12. https://doi.org/10.3390/pr7070404.
Article
CAS
Google Scholar
López-Garzón CS, Straathof AJJ. Recovery of carboxylic acids produced by fermentation. Biotechnol Adv. 2014;32:873–904. https://doi.org/10.1016/j.biotechadv.2014.04.002.
Article
CAS
PubMed
Google Scholar
Raes SMT, Jourdin L, Carlucci L, van den Bruinhorst A, Strik DPBTB, Buisman CJN. Water-based synthesis of hydrophobic ionic and their bioprocess compatibility. ChemistryOpen. 2018;7:878–84. https://doi.org/10.1002/open.201800187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weilnhammer C, Blass E. Continuous fermentation with product recovery by in-situ extraction. Chem Eng Technol. 1994;17:365–73. https://doi.org/10.1002/ceat.270170602.
Article
CAS
Google Scholar
Tong Y, Hirata M, Takanashi H, Hano T, Matsumoto M, Miura S. Solvent screening for production of lactic acid by extractive fermentation. Sep Sci Technol. 1998;33:1439–53. https://doi.org/10.1080/01496399808545059.
Article
CAS
Google Scholar
Choi K, Jeon BS, Kim B. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii. Appl Biochem Biotechnol. 2013. https://doi.org/10.1007/s12010-013-0310-3.
Article
PubMed
Google Scholar
Jeon BS, Moon C, Kim BC, Kim H, Um Y, Sang BI. In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1. Enzyme Microb Technol. 2013;53:143–51. https://doi.org/10.1016/j.enzmictec.2013.02.008.
Article
CAS
PubMed
Google Scholar
Offeman RD, Stephenson SK, Robertson GH, Orts WJ. Solvent extraction of ethanol from aqueous solutions using biobased oils, alcohols, and esters. JAOCS J Am Oil Chem Soc. 2006;83:153–7. https://doi.org/10.1007/s11746-006-1188-9.
Article
CAS
Google Scholar
Xu J, Guzman JJL, Andersen SJ, Rabaey K, Angenent LT. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem Commun R Soc Chem. 2015;51:6847–50. https://doi.org/10.1039/c5cc01897h.
Article
CAS
Google Scholar
Saboe PO, Manker LP, Michener WE, Peterson DJ, Brandner DG, Deutch SP, et al. In situ recovery of bio-based carboxylic acids. Green Chem R Soc Chem. 2018;20:1791–804. https://doi.org/10.1039/c7gc03747c.
Article
CAS
Google Scholar
EFSA (European Food Safety Authority). Evaluation of the application for a new alternative processing method for animal by-products of Category 3 material (ChainCraft B.V.). EFSA J. 2018;16. https://doi.org/10.2903/j.efsa.2018.5281.
Brennan TCR, Turner CD, Krömer JO, Nielsen LK. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2513–22. https://doi.org/10.1002/bit.24536.
Article
CAS
PubMed
Google Scholar
Pedraza-de la Cuesta S, Knopper L, van der Wielen LAM, Cuellar MC. Techno-economic assessment of the use of solvents in the scale-up of microbial sesquiterpene production for fuels and fine chemicals. Biofuels Bioprod Biorefining. 2019;13:140–52. https://doi.org/10.1002/bbb.1949.
Article
CAS
Google Scholar
Marten B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. Int Dairy J. 2006;16:1374–82. https://doi.org/10.1016/j.idairyj.2006.06.015.
Article
CAS
Google Scholar
Hess BW, Moss GE, Rule DC. A decade of developments in the area of fat supplementation research with beef cattle and sheep. J Anim Sci. 2008;86:188–204. https://doi.org/10.2527/jas.2007-0546.
Article
Google Scholar
Li Z, Xu B, Lu Z, Wang Y. Effects of long-chain fatty acid supplementation on the growth performance of grower and finisher pigs: a meta-analysis. J Anim Sci Biotechnol. 2019;10:1–12. https://doi.org/10.1186/s40104-019-0374-1.
Article
CAS
Google Scholar
Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: Towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol. 2020;11:1–15. https://doi.org/10.1186/s40104-020-00446-1.
Article
Google Scholar
Poteko J, Schrade S, Zeyer K, Mohn J, Zaehner M, Zeitz JO, et al. Methane emissions and milk fatty acid profiles in dairy cows fed linseed, measured at the group level in a naturally ventilated housing and individually in respiration chambers. Animals. 2020;10:1–18. https://doi.org/10.3390/ani10061091.
Article
Google Scholar
Dohme F, Machmüller A, Wasserfallen A, Kreuzer M. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol. 2001;32:47–51. https://doi.org/10.1046/j.1472-765X.2001.00863.x.
Article
CAS
PubMed
Google Scholar
Machmüller A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric Ecosyst Environ. 2006;112:107–14. https://doi.org/10.1016/j.agee.2005.08.010.
Article
CAS
Google Scholar
ISO. Milk fat—determination of the fatty acid composition by gas–liquid chromatography. 2003. https://www.nen.nl/en/nen-iso-15885-2003-en-86116.
Contarini G, Povolo M, Pelizzola V, Monti L, Lercker G. Interlaboratory evaluation of milk fatty acid composition by using different GC operating conditions. J Food Compos Anal. 2013;32:131–40. https://doi.org/10.1016/j.jfca.2013.08.008.
Article
CAS
Google Scholar
Prabhu R, Altman E, Eitemana MA. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol. 2012;78:8564–70. https://doi.org/10.1128/AEM.02443-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contreras-Dávila CA, Ali A, Buisman CJN, Strik DPBTB. Lactate metabolism and microbiome composition are affected by nitrogen gas supply in continuous lactate-based chain elongation. Fermentation. 2021;7:1–16. https://doi.org/10.3390/fermentation7010041.
Article
CAS
Google Scholar
Esquivel-Elizondo S, Ilhan ZE, Garcia-Peña I, Krajmalnik-Brown R. Insights into butyrate production in a controlled fermentation system via gene predictions. mSystems. 2017. https://doi.org/10.1128/mSystems.00051-17.
Article
PubMed
PubMed Central
Google Scholar
Petrognani C, Boon N, Ganigué R. Production of isobutyric acid from methanol by Clostridium luticellarii. Green Chem R Soc Chem. 2020;22:8389–402. https://doi.org/10.1039/d0gc02700f.
Article
CAS
Google Scholar
Roghair M, Liu Y, Adiatma JC, Weusthuis RA, Bruins ME, Buisman CJN, et al. Effect of n-caproate concentration on chain elongation and competing processes. ACS Sustain Chem Eng. 2018;6:7499–506. https://doi.org/10.1021/acssuschemeng.8b00200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresour Technol. 2013;136:735–8. https://doi.org/10.1016/j.biortech.2013.02.114.
Article
CAS
PubMed
Google Scholar
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19041114.
Article
PubMed
PubMed Central
Google Scholar
Rühl J, Schmid A, Blank LM. Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol. 2009;75:4653–6. https://doi.org/10.1128/AEM.00225-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maia MRG, Chaudhary LC, Figueres L, Wallace RJ. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007;91:303–14. https://doi.org/10.1007/s10482-006-9118-2.
Article
CAS
PubMed
Google Scholar
Sousa DZ, Smidt H, Alves MM, Stams AJM. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol. 2009;68:257–72. https://doi.org/10.1111/j.1574-6941.2009.00680.x.
Article
CAS
PubMed
Google Scholar
Cavaleiro AJ, Pereira MA, Guedes AP, Stams AJM, Alves MM, Sousa DZ. Conversion of Cn-unsaturated into Cn-2-saturated LCFA can occur uncoupled from methanogenesis in anaerobic bioreactors. Environ Sci Technol. 2016;50:3082–90. https://doi.org/10.1021/acs.est.5b03204.
Article
CAS
PubMed
Google Scholar
Zhu X, Zhou Y, Wang Y, Wu T, Li X, Li D, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels BioMed Central. 2017;10:1–12. https://doi.org/10.1186/s13068-017-0788-y.
Article
CAS
Google Scholar
Kaur G, Garcia-Gonzalez L, Elst K, Truzzi F, Bertin L, Kaushik A, et al. Reactive extraction for in-situ carboxylate recovery from mixed culture fermentation. Biochem Eng J. 2020;160: 107641. https://doi.org/10.1016/j.bej.2020.107641.
Article
CAS
Google Scholar
Hanczakowska E. The use of medium-chain fatty acids in piglet feeding—a review. Ann Anim Sci. 2017;17:967–77. https://doi.org/10.1515/aoas-2016-0099.
Article
CAS
Google Scholar
Baltić B, Starčević M, Dordević J, Mrdović B, Marković R. Importance of medium chain fatty acids in animal nutrition. IOP Conf Ser Earth Environ Sci. 2017. https://doi.org/10.1088/1755-1315/85/1/012048.
Article
Google Scholar
Abdelhamed H, Ozdemir O, Ibrahim I, Lawrence M, Karsi A. Antibacterial activities of trans-cinnamaldehyde, caprylic acid, and β-resorcylic acid against catfish pathogens. Aquaculture. 2019;504:334–44. https://doi.org/10.1016/j.aquaculture.2019.02.017.
Article
CAS
Google Scholar
Cochrane RA, Dritz SS, Woodworth JC, Stark CR, Saensukjaroenphon M, Gebhardt JT, et al. Assessing the effects of medium-chain fatty acids and fat sources on PEDV infectivity. Transl Anim Sci. 2019;4:1051–9. https://doi.org/10.1093/tas/txz179.
Article
CAS
PubMed Central
Google Scholar
Kim SA, Rhee MS. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O15. Food Control. 2016;60:447–54. https://doi.org/10.1016/j.foodcont.2015.08.022.
Article
CAS
Google Scholar
Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmüller A. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett Appl Microbiol. 2003;37:35–9. https://doi.org/10.1046/j.1472-765X.2003.01343.x.
Article
CAS
PubMed
Google Scholar
Zentek J, Buchheit-Renko S, Ferrara F, Vahjen W, Van Kessel AG, Pieper R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim Health Res Rev. 2011;12:83–93. https://doi.org/10.1017/S1466252311000089.
Article
CAS
PubMed
Google Scholar
Agler MT, Wrenn BA, Zinder SH, Angenent LT. Waste to bioproduct conversion with undefined mixed cultures : the carboxylate platform. Trends Biotechnol. 2011;29:70–8. https://doi.org/10.1016/j.tibtech.2010.11.006.
Article
CAS
PubMed
Google Scholar
ChainCraft B.V. www.chaincraft.nl. Accessed 12 Jan 2021.
Schmidt JH. Life cycle assessment of five vegetable oils. J Clean Prod. 2015;87:130–8. https://doi.org/10.1016/j.jclepro.2014.10.011.
Article
Google Scholar
Chen WS, Strik DPBTB, Buisman CJN, Kroeze C. Production of caproic acid from mixed organic waste: an environmental life cycle perspective. Environ Sci Technol. 2017;51:7159–68. https://doi.org/10.1021/acs.est.6b06220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maes J, De Meulenaer B, Van Heerswynghels P, De Greyt W, Eppe G, De Pauw E, et al. Removal of dioxins and PCB from fish oil by activated carbon and its influence on the nutritional quality of the oil. JAOCS J Am Oil Chem Soc. 2005;82:593–7. https://doi.org/10.1007/s11746-005-1114-1.
Article
CAS
Google Scholar
Liu L, Chen J, Lim PE, Wei D. Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol. 2018;30:2997–3007. https://doi.org/10.1007/s10811-018-1526-y.
Article
CAS
Google Scholar
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated linoleic acid: potential health benefits as a functional food ingredient. Annu Rev Food Sci Technol. 2016;7:221–44. https://doi.org/10.1146/annurev-food-041715-033028.
Article
CAS
PubMed
Google Scholar
Hosseini ES, Kermanshahi RK, Hosseinkhani S, Shojaosadati SA, Nazari M. Conjugated linoleic acid production from various substrates by probiotic Lactobacillus plantarum. Ann Microbiol. 2015;65:27–32. https://doi.org/10.1007/s13213-014-0832-0.
Article
CAS
Google Scholar
Kim YJ, Liu RH, Rychlik JL, Russell JB. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J Appl Microbiol. 2002;92:976–82. https://doi.org/10.1046/j.1365-2672.2002.01610.x.
Article
CAS
PubMed
Google Scholar
Shinn SE, Ruan CM, Proctor A. Strategies for producing and incorporating conjugated linoleic acid-rich oils in foods. Annu Rev Food Sci Technol. 2017;8:181–204. https://doi.org/10.1146/annurev-food-030216-025703.
Article
CAS
PubMed
Google Scholar
Murota K, Kawada T, Matsui N, Sakakibara M, Takahashi N, Fushiki T. Oleyl alcohol inhibits intestinal long-chain fatty acid absorption in rats. J Nutr Sci Vitaminol (Tokyo). 2000;46:302–8. https://doi.org/10.3177/jnsv.46.302.
Article
CAS
Google Scholar
Cheng X, Ng HK, Gan S, Ho JH, Pang KM. Numerical analysis of the effects of biodiesel unsaturation levels on combustion and emission characteristics under conventional and diluted air conditions. Energy Fuels. 2018;32:8392–410. https://doi.org/10.1021/acs.energyfuels.8b00650.
Article
CAS
Google Scholar
Holzhäuser FJ, Mensah JB, Palkovits R. (Non-)Kolbe electrolysis in biomass valorization-a discussion of potential applications. Green Chem R Soc Chem. 2020;22:286–301. https://doi.org/10.1039/c9gc03264a.
Article
CAS
Google Scholar
SkyNRG. SkyNRG, KLM and SHV Energy announce project first European plant for sustainable aviation fuel. 2019. https://skynrg.com/press-releases/klm-skynrg-and-shv-energy-announce-project-first-european-plant-for-sustainable-aviation-fuel/. Accessed 11 Jan 2021.
Roghair M, Strik DPBTB, Steinbusch KJJ, Weusthuis RA, Bruins ME, Buisman CJN. Granular sludge formation and characterization in a chain elongation process. Process Biochem. 2016;51:1594–8. https://doi.org/10.1016/j.procbio.2016.06.012.
Article
CAS
Google Scholar
Zhu X, Tao Y, Liang C, Li X, Wei N, Zhang W, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep. 2015;5:1–9. https://doi.org/10.1038/srep14360.
Article
CAS
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11. https://doi.org/10.1093/nar/gks808.
Article
CAS
Google Scholar
Balcome S, Carlson M. interactiveDisplay: package for enabling powerful shiny web displays of bioconductor objects. 2020. https://doi.org/10.18129/B9.bioc.interactiveDisplay.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. CRAN. 2019. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 19 Mar 2021.
Beck MW, Mikryukov V. ggord: ordination plots with ggplot2. 2020. https://doi.org/10.5281/zenodo.3828862.
Wickham H. ggplot2: elegant graphics for data analysis. Appl Spat Data Anal with R. Springer; 2008. https://doi.org/10.1007/978-0-387-98141-3.
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2. https://doi.org/10.1038/nmeth.2658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:1–25. https://doi.org/10.1371/journal.pcbi.1004226.
Article
CAS
Google Scholar
Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. Qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012;48. https://doi.org/10.18637/jss.v048.i04.
Dickey A, Grenié M, Thompson R, Selzer L, Strbenac D. Igraph manual-network analysis and visualization: package. 2019;426. http://igraph.org.