Oxo chemicals market: Global industry analysis and opportunity assessment 2016–2026. https://www.futuremarketinsights.com/reports/oxo-chemicals-market. Accessed 12 Feb 2022.
Jiang W, Hernández Villamor D, Peng H, Chen J, Liu L, Haritos V, et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol. 2021;17:845–55.
Article
CAS
PubMed
Google Scholar
Luan G, Zhang S, Lu X. Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Curr Opin Biotechnol. 2020;62:1–6.
Article
CAS
PubMed
Google Scholar
Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, et al. Conversion of Escherichia coli to generate all biomass carbon from CO(2). Cell. 2019;179:1255-1263.e1212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen FY, Jung HW, Tsuei CY, Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 2020;182:933-946.e914.
Article
CAS
PubMed
Google Scholar
Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020;16:538–45.
Article
CAS
PubMed
Google Scholar
Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO(2). Nat Biotechnol. 2020;38:210–6.
Article
CAS
PubMed
Google Scholar
Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol. 2020;62:168–80.
Article
CAS
PubMed
Google Scholar
Tuyishime P, Sinumvayo JP. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol. 2020;36:118.
Article
PubMed
Google Scholar
Zhu T, Zhao T, Bankefa OE, Li Y. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: Challenges and opportunities. Biotechnol Adv. 2020;39: 107467.
Article
CAS
PubMed
Google Scholar
Lin R, Deng C, Zhang W, Hollmann F, Murphy JD. Production of bio-alkanes from biomass and CO(2). Trends Biotechnol. 2021;39:370–80.
Article
CAS
PubMed
Google Scholar
Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. A Modular In vitro platform for the production of terpenes and polyketides from CO(2). Angew Chem Int Ed Engl. 2021;60:16420–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science. 2021;373:1523–7.
Article
CAS
PubMed
Google Scholar
HIS Market Technology. Oxo chemicals, chemical economics handbook, 2021, https://ihsmarkit.com/products/oxo-chemical-economics-handbook.html. Accessed 12 Feb 2022.
Fact.MR. Isobutyraldehyde market analysis report by physical nature (amorphous powder isobutyraldehyde ,liquid Isobutyraldehyde ), by grades (food grade ,pharmaceutical grade ,industrial grade), by end use & B region - global market insights 2018 to 2026. https://www.factmr.com/report/3793/isobutyraldehyde-market. Accessed 12 Feb 2022.
Bizzari S N, Blagoev M and Kishi A. CEH marketing research report-oxo chemicals. 2009.
Atsumi S, Rodriguez G. Escherichia coli engineered for isobutyraldehyde production: U.S. Patent 9,701,948[P]. 2017.
Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009;27:1177–80.
Article
CAS
PubMed
Google Scholar
Zhao L, Chen Z, Lin S, Wu T, Yu S, Huo YX. In vitro biosynthesis of isobutyraldehyde through the establishment of a one-step self-assembly-based immobilization strategy. J Agric Food Chem. 2021;69:14609–19.
Article
CAS
PubMed
Google Scholar
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2021;105:2675–92.
Article
CAS
PubMed
Google Scholar
Zhou J, Chen Z, Wang Y. Bioaldehydes and beyond: expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Curr Opin Chem Biol. 2020;59:37–46.
Article
CAS
PubMed
Google Scholar
Rodriguez GM, Atsumi S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact. 2012;11:90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez GM, Atsumi S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng. 2014;25:227–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9.
Article
CAS
PubMed
Google Scholar
Yu H, Wang N, Huo W, Zhang Y, Zhang W, Yang Y, et al. Establishment of BmoR-based biosensor to screen isobutanol overproducer. Microb Cell Fact. 2019;18:30.
Article
PubMed
PubMed Central
Google Scholar
Boock JT, Freedman AJE, Tompsett GA, Muse SK, Allen AJ, Jackson LA, et al. Engineered microbial biofuel production and recovery under supercritical carbon dioxide. Nat Commun. 2019;10:587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Jia X, Wen J. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnol Lett. 2012;34:2253–8.
Article
CAS
PubMed
Google Scholar
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77:3300–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact. 2013;12:119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sherkhanov S, Korman TP, Chan S, Faham S, Liu H, Sawaya MR, et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun. 2020;11:4292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD. Isotopically nonstationary (13)C flux analysis of cyanobacterial isobutyraldehyde production. Metab Eng. 2017;42:9–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheah YE, Xu Y, Sacco SA, Babele PK, Zheng AO, Johnson CH, et al. Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942. Metab Eng. 2020;60:56–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335:1596.
Article
CAS
PubMed
Google Scholar
Su H, Lin J, Wang G. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Sci Rep. 2016;6:39543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higashide W, Li Y, Yang Y, Liao JC. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol. 2011;77:2727–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Brigham CJ, Gai CS, Sinskey AJ. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol. 2012;96:283–97.
Article
CAS
PubMed
Google Scholar
Ni J, Tao F, Xu P, Yang C. Engineering Cyanobacteria for photosynthetic production of C3 platform chemicals and terpenoids from CO(2). Adv Exp Med Biol. 2018;1080:239–59.
Article
CAS
PubMed
Google Scholar
Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, et al. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnol Biofuels. 2017;10:273.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shastri AA, Morgan JA. A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry. 2007;68:2302–12.
Article
CAS
PubMed
Google Scholar
Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal. 2020;3:274–88.
Article
CAS
Google Scholar
Xiao L, Liu G, Gong F, Zhu H, Zhang Y, Cai Z, et al. A minimized synthetic carbon fixation cycle. ACS Catal. 2022;12:799–808.
Article
CAS
Google Scholar
Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun. 2020;11:5090.
Article
PubMed
PubMed Central
CAS
Google Scholar
Müller V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol. 2019;37:1344–54.
Article
PubMed
CAS
Google Scholar
Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng. 2020;62:30–41.
Article
CAS
PubMed
Google Scholar
Chen X, Wang Y, Dong X, Hu G, Liu L. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production. Appl Microbiol Biotechnol. 2017;101:4041–52.
Article
CAS
PubMed
Google Scholar
Stöckl M, Claassens NJ, Lindner SN, Klemm E, Holtmann D. Coupling electrochemical CO(2) reduction to microbial product generation—identification of the gaps and opportunities. Curr Opin Biotechnol. 2021;74:154–63.
Article
PubMed
CAS
Google Scholar
Schulman M, Parker D, Ljungdahl LG, Wood HG. Total synthesis of acetate from CO2 Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J Bacteriol. 1972;109:633–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL, Coates JD. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO(2) fixation pathway. Proc Natl Acad Sci USA. 2018;115:E92-e101.
Article
CAS
PubMed
Google Scholar
Evans MC, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA. 1966;55:928–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs G, Stupperich E, Eden G. Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Archives Microbiol. 1980;128:64–71.
Article
CAS
Google Scholar
Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci USA. 2008;105:7851–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 2007;318:1782–6.
Article
CAS
PubMed
Google Scholar
Hügler M, Huber H, Stetter KO, Fuchs G. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol. 2003;179:160–73.
Article
PubMed
CAS
Google Scholar
Strauss G, Fuchs G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem. 1993;215:633–43.
Article
CAS
PubMed
Google Scholar
Holo H. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol. 1989;151:252–6.
Article
CAS
Google Scholar
Calvin M, Benson AA. The path of carbon in photosynthesis. Science. 1948;107:476–80.
Article
CAS
PubMed
Google Scholar
Weitz S, Hermann M, Linder S, Bengelsdorf FR, Takors R, Dürre P. Isobutanol production by autotrophic acetogenic bacteria. Front Bioeng Biotechnol. 2021;9: 657253.
Article
PubMed
PubMed Central
Google Scholar
Perkins C, Weimer AW. Solar-thermal production of renewable hydrogen. AIChE J. 2009;55:286–93.
Article
CAS
Google Scholar
Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol Biofuels. 2018;11:172.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanford PA, Woolston BM. Synthetic or natural? Metabolic engineering for assimilation and valorization of methanol. Curr Opin Biotechnol. 2021;74:171–9.
Article
PubMed
CAS
Google Scholar
Gassler T, Baumschabl M, Sallaberger J, Egermeier M, Mattanovich D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab Eng. 2022;69:112–21.
Article
CAS
PubMed
Google Scholar
Wang G, Olofsson-Dolk M, Hansson FG, Donati S, Li X, Chang H, et al. Engineering yeast Yarrowia lipolytica for methanol assimilation. ACS Synth Biol. 2021;10:3537–50.
Article
CAS
PubMed
Google Scholar
Huo YX, Wernick DG, Liao JC. Toward nitrogen neutral biofuel production. Curr Opin Biotechnol. 2012;23:406–13.
Article
CAS
PubMed
Google Scholar
Choi K-Y. Nitrogen-neutral amino acids refinery: deamination of amino acids for bio-alcohol and ammonia production. ChemBioEng Reviews. 2021;8:213–26.
Article
CAS
Google Scholar
Huo YX, Cho KM, Rivera JG, Monte E, Shen CR, Yan Y, et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol. 2011;29:346–51.
Article
CAS
PubMed
Google Scholar
Yuan Y, Song W, Liu J, Chen X, Luo Q, Liu L. Production of α-ketoisocaproate and α-keto-β-methylvalerate by engineered L-amino acid deaminase. ChemCatChem. 2019;11:2464–72.
Article
CAS
Google Scholar
Song W, Chen X, Wu J, Xu J, Zhang W, Liu J, et al. Biocatalytic derivatization of proteinogenic amino acids for fine chemicals. Biotechnol Adv. 2020;40: 107496.
Article
CAS
PubMed
Google Scholar
Ma L, Guo L, Yang Y, Guo K, Yan Y, Ma X, et al. Protein-based biorefining driven by nitrogen-responsive transcriptional machinery. Biotechnol Biofuels. 2020;13:29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunjapur AM, Prather KL. Microbial engineering for aldehyde synthesis. Appl Environ Microbiol. 2015;81:1892–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol. 2020;104:3473–92.
Article
CAS
PubMed
Google Scholar
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: Current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol. 2021;105:2991–3007.
Article
CAS
PubMed
Google Scholar
Jordan DB, Braker JD, Bowman MJ, Vermillion KE, Moon J, Liu ZL. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Biochim Biophys Acta. 2011;1814:1686–94.
Article
CAS
PubMed
Google Scholar
Song HS, Jeon JM, Kim HJ, Bhatia SK, Sathiyanarayanan G, Kim J, et al. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour Technol. 2017;245:1430–5.
Article
CAS
PubMed
Google Scholar
Sampson EM, Bobik TA. Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol. 2008;190:2966–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayakody LN, Johnson CW, Whitham JM, Giannone RJ, Black BA, Cleveland NS, et al. Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ Sci. 2018;11:1625–38.
Article
CAS
Google Scholar
Yi X, Lin L, Mei J, Wang W. Transporter proteins in Zymomonas mobilis contribute to the tolerance of lignocellulose-derived phenolic aldehyde inhibitors. Bioprocess Biosyst Eng. 2021;44:1875–82.
Article
CAS
PubMed
Google Scholar
Zhou L, Xu Z, Wen Z, Lu M, Wang Z, Zhang Y, et al. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. Bioresour Technol. 2021;329: 124910.
Article
CAS
PubMed
Google Scholar
Rogers JK, Taylor ND, Church GM. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol. 2016;42:84–91.
Article
CAS
PubMed
Google Scholar
Wu J, Du G, Zhou J, Chen J. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J Biotechnol. 2014;188:72–80.
Article
CAS
PubMed
Google Scholar
Jarboe LR. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol. 2011;89:249–57.
Article
CAS
PubMed
Google Scholar
Lee C, Kim I, Lee J, Lee KL, Min B, Park C. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12. J Bacteriol. 2010;192:4205–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam KT, Ingram LO. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J Ind Microbiol Biotechnol. 2011;38:431–9.
Article
CAS
PubMed
Google Scholar
Frazão CR, Maton V, François JM, Walther T. Development of a metabolite sensor for high-throughput detection of aldehydes in Escherichia Coli. Front Bioeng Biotechnol. 2018;6:118.
Article
PubMed
PubMed Central
Google Scholar
de Santos EL, Meyerowitz JT, Mayo SL, Murray RM. Engineering transcriptional regulator effector specificity using computational design and in vitro rapid prototyping: developing a vanillin sensor. ACS Synth Biol. 2016;5:287–95.
Article
PubMed
CAS
Google Scholar
Shi S, Qi N, Nielsen J. Microbial production of chemicals driven by CRISPR-Cas systems. Curr Opin Biotechnol. 2021;73:34–42.
Article
PubMed
CAS
Google Scholar
Su B, Song D, Zhu H. Homology-dependent recombination of large synthetic pathways into E’ coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology. Microb Cell Fact. 2020;19:108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng. 2016;33:19–27.
Article
CAS
PubMed
Google Scholar
Gu L, Yuan H, Lv X, Li G, Cong R, Li J, et al. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzyme Microb Technol. 2020;134: 109488.
Article
CAS
PubMed
Google Scholar
Baek S, Utomo JC, Lee JY, Dalal K, Yoon YJ, Ro DK. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system. Metab Eng. 2021;64:111–21.
Article
CAS
PubMed
Google Scholar
Zhang Y, Sun X, Wang Q, Xu J, Dong F, Yang S, et al. Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth Biol. 2020;9:1998–2008.
Article
CAS
PubMed
Google Scholar
Zhang ZX, Wang YZ, Xu YS, Sun XM, Huang H. Developing GDi-CRISPR system for multi-copy integration in Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2021;193:2379–88.
Article
CAS
PubMed
Google Scholar
Opgenorth PH, Korman TP, Iancu L, Bowie JU. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat Chem Biol. 2017;13:938–42.
Article
CAS
PubMed
Google Scholar
Guterl JK, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, et al. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. Chemsuschem. 2012;5:2165–72.
Article
CAS
PubMed
Google Scholar
Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016;354:900–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasor BJ, Vögeli B, Landwehr GM, Bogart JW, Karim AS, Jewett MC. Toward sustainable, cell-free biomanufacturing. Curr Opin Biotechnol. 2021;69:136–44.
Article
CAS
PubMed
Google Scholar
Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energ Technol. 2017;5:929–36.
Article
CAS
Google Scholar
Dinh C-T, García de Arquer FP, Sinton D, Sargent EH. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 2018;3:2835–40.
Article
CAS
Google Scholar
Liu Z, Yang H, Kutz R, Masel RI. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J Electrochem Soc. 2018;165:J3371–7.
Article
CAS
Google Scholar
Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO(2). Microb Cell Fact. 2019;18:15.
Article
PubMed
PubMed Central
Google Scholar
Berhanu S, Ueda T, Kuruma Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat Commun. 2019;10:1325.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X, Okano K, et al. In vitro production of n-butanol from glucose. Metab Eng. 2013;20:84–91.
Article
CAS
PubMed
Google Scholar
Lim HJ, Kim DM. Cell-free synthesis of industrial chemicals and biofuels from carbon feedstocks. Curr Opin Biotechnol. 2021;73:158–63.
Article
PubMed
CAS
Google Scholar
d’Espaux L, Mendez-Perez D, Li R, Keasling JD. Synthetic biology for microbial production of lipid-based biofuels. Curr Opin Chem Biol. 2015;29:58–65.
Article
CAS
PubMed
Google Scholar
Le Feuvre RA, Scrutton NS. A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth Syst Biotechnol. 2018;3:105–12.
Article
PubMed
PubMed Central
Google Scholar