Chi Z, Wang Z-P, Wang G-Y, Khan I, Chi Z-M. Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol. 2016;36(1):99–107.
Article
CAS
Google Scholar
Mondala AH. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol. 2015;42(4):487–506.
Article
CAS
Google Scholar
Werpy T, Petersen G, Aden A, Bozell JJ, Jones S. Top value added chemicals from biomass. nato advanced science institutes. Richland: Pacific Northwest National Laboratory; 2004.
Google Scholar
Zou X, Cheng C, Feng J, Song X, Lin M, Yang S-T. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol. 2019;39(3):408–21.
Article
CAS
Google Scholar
Presecki AV, Vasic-Racki D. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp Strains. Biotech Lett. 2005;27(23–24):1835–9.
Article
CAS
Google Scholar
Becker J, Wittmann C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem-Int Ed. 2015;54(11):3328–50.
Article
CAS
Google Scholar
Liu J, Li J, Shin H-d, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. Bioresour Technol. 2017;239:412–21.
Article
CAS
Google Scholar
Koevilein A, Kubisch C, Cai L, Ochsenreither K. Malic acid production from renewables: a review. J Chem Technol Biotechnol. 2020;95(3):513–26.
Article
CAS
Google Scholar
Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, Dong W, Ma J, Fang Y, Jiang M, et al. Current advance in biological production of malic acid using wild type and metabolic engineered strains. Biores Technol. 2018;258:345–53.
Article
CAS
Google Scholar
Iyyappan J, Bharathiraja B, Baskar G, Kamalanaban E. Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. Biores Technol. 2019;281:18–25.
Article
CAS
Google Scholar
Iyyappan J, Baskar G, Bharathiraja B, Gopinath M. Enhanced malic acid production using Aspergillus niger coupled with in situ product recovery. Bioresour Technol. 2020. https://doi.org/10.1016/j.biortech.2020.123259.
Article
Google Scholar
Xu Y, Shan L, Zhou Y, Xie Z, Ball NS, Cao W, Liu H. Development of a Cre-loxP-based genetic system in Aspergillus niger ATCC1015 and its application to construction of efficient organic acid-producing cell factories. Appl Microbiol Biotechnol. 2019;103(19):8105–14.
Article
CAS
Google Scholar
Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv. 2013;31(6):986–91.
Article
CAS
Google Scholar
Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes. 2014;7:151–151.
Article
Google Scholar
Warnecke T, Gill RT. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact. 2005. https://doi.org/10.1186/1475-2859-4-25.
Article
Google Scholar
Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol. 1998;180(4):767–72.
Article
CAS
Google Scholar
Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2009. https://doi.org/10.1186/1754-6834-2-26.
Article
Google Scholar
Lin Z, Li J, Yan X, Yang J, Li X, Chen P, Yang X. Engineering of the small noncoding RNA (sRNA) DsrA together with the sRNA chaperone Hfq enhances the acid tolerance of Escherichia coli. Appl Environ Microbiol. 2021. https://doi.org/10.1128/AEM.02923-20.
Article
Google Scholar
Ding Y, Li S, Dou C, Yu Y, Huang H. Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio. Appl Biochem Biotechnol. 2011;164(8):1461–7.
Article
CAS
Google Scholar
Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015;33(7):1484–92.
Article
CAS
Google Scholar
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng. 2019;56:1–16.
Article
CAS
Google Scholar
Kitagawa S, Sugiyama M, Motoyama T, Abe F. Soy peptides enhance yeast cell growth at low temperatures. Biotech Lett. 2013;35(3):375–82.
Article
CAS
Google Scholar
Li X, Cen N, Liu L, Chen Y, Yang X, Yu K, Guo J, Liao X, Shi B. Collagen peptide provides Saccharomyces cerevisiae with robust stress tolerance for enhanced bioethanol Production. ACS Appl Mater Interfaces. 2020;12(48):53879–90.
Article
CAS
Google Scholar
Zhang J, Wu N, Ou W, Li Y, Liang Y, Peng C, Li Y, Xu Q, Tong Y. Peptide supplementation relieves stress and enhances glycolytic flux in filamentous fungi during organic acid bioproduction. Biotechnol Bioeng. 2022. https://doi.org/10.1002/bit.28152.
Article
Google Scholar
Xu Y, Zhou Y, Cao W, Liu H. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth Biol. 2020;9(6):1418–25.
Article
CAS
Google Scholar
Liu J, Xie Z, Shin H-D, Li J, Du G, Chen J, Liu L. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol. 2017;253:1–9.
Article
CAS
Google Scholar
Wu N, Zhang J, Ou W, Chen Y, Wang R, Li K, Sun X-M, Li Y, Xu Q, Huang H. Transcriptome analysis of Rhizopus oryzae seed pellet formation using triethanolamine. Biotechnol Biofuels. 2021. https://doi.org/10.1186/s13068-021-02081-y.
Article
Google Scholar
Matsuura K, Takagi H. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J Biosci Bioeng. 2005;100(5):538–44.
Article
CAS
Google Scholar
Kojima C, Irie K, Tada T, Tanaka N. Temperature-sensitive elastin-mimetic dendrimers: effect of peptide length and dendrimer generation to temperature sensitivity. Biopolymers. 2014;101(6):603–12.
Article
CAS
Google Scholar
Qin Z. Soluble elastin peptides in cardiovascular homeostasis: foe or ally. Peptides. 2015;67:64–73.
Article
CAS
Google Scholar
Henderson CM, Lozada-Contreras M, Jiranek V, Longo ML, Block DE. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol. 2013;79(1):91–104.
Article
CAS
Google Scholar
Iyyappan J, Baskar G, Gnansounou E, Pandey A, Raaman JK, Bharathiraja B, Praveenkumar R. Recent advances in microbial production of malic acid from renewable byproducts. Rev Environ Sci Bio-Technol. 2019;18(3):579–95.
Article
CAS
Google Scholar
Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, et al. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot. 2012;75:307–24.
CAS
Google Scholar
Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem. 2013;70:204–12.
Article
CAS
Google Scholar
Moon JE, Heo W, Lee SH, Lee SH, Lee HG, Lee JH, Kim YJ. Trehalose protects the probiotic yeast Saccharomyces boulardii against oxidative stress-induced cell death. J Microbiol Biotechnol. 2020;30(1):54–61.
Article
CAS
Google Scholar
Nwaka S, Mechler B, Holzer H. Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 1996;386(2–3):235–8.
Article
CAS
Google Scholar
Ji X-J, Huang H, Ouyang P-K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv. 2011;29(3):351–64.
Article
CAS
Google Scholar
Xu Q, Li S, Huang H, Wen J. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv. 2012;30(6):1685–96.
Article
CAS
Google Scholar
Liang G, Zhou P, Lu J, Liu H, Qi Y, Gao C, Guo L, Hu G, Chen X, Liu L. Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida glabrata. Biotechnol Bioeng. 2021;118(11):4347–59.
Article
CAS
Google Scholar
Sui Y-f, Schuetze T, Ouyang L-m, Lu H, Liu P, Xiao X, Qi J, Zhuang Y-P, Meyer V. Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger. Microb Cell Fact. 2020. https://doi.org/10.1186/s12934-020-01450-w.
Article
Google Scholar
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M. Metabolic engineering of Pichia pastorisfor malic acid production from methanol. Biotechnol Bioeng. 2021;118(1):357–71.
Article
CAS
Google Scholar
Papadaki A, Kopsahelis N, Freire DMG, Mandala I, Koutinas AA. Olive oil oleogel formulation using wax esters derived from soybean fatty acid distillate. Biomolecules. 2020. https://doi.org/10.3390/biom10010106.
Article
Google Scholar
Ali MW, Kim I-D, Bilal S, Shahzad R, Saeed MT, Adhikari B, Nabi RBS, Kyo JR, Shin D-H. Effects of bacterial fermentation on the biochemical constituents and antioxidant Potential of fermented and unfermented soybeans using probiotic Bacillus subtilis (KCTC 13241). Molecules. 2017. https://doi.org/10.3390/molecules22122200.
Article
Google Scholar
Morita Y, Nakamori S, Takagi H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng. 2002;94(5):390–4.
Article
CAS
Google Scholar
Takagi H, Sakai K, Morida K, Nakamori S. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000;184(1):103–8.
Article
CAS
Google Scholar
Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology. 1985;22(4):367–77.
Article
CAS
Google Scholar
Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, et al. Proline inhibits aggregation during protein refolding. Protein Sci. 2000;9:344.
Article
CAS
Google Scholar
Ferdouse J, Kusaba Y, Fujimaru Y, Yamamoto Y, Kitagaki H. Methionine and glycine stabilize mitochondrial activity in sake yeast during ethanol fermentation. Food Technol Biotechnol. 2019;57(4):535–43.
Article
CAS
Google Scholar
Gorgens JF, van Zyl WH, Knoetze JH, Hahn-Hagerdal B. Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium. Appl Microbiol Biotechnol. 2005;67(5):684–91.
Article
Google Scholar
Thomas KC, Ingledew WM. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol. 1990;56(7):2046–50.
Article
CAS
Google Scholar
Wiame JM, Grenson M, Arst HN Jr. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88.
Article
CAS
Google Scholar
ter Schure EG, van Riel NAW, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2000;24(1):67–83.
Article
Google Scholar
Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol. 1996;62(9):3187–95.
Article
CAS
Google Scholar
Zhang J, Hao H, Chen M, Wang H, Feng Z, Chen H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. AMB Express. 2017. https://doi.org/10.1186/s13568-017-0406-1.
Article
Google Scholar
Johansson M, Chen X, Milanova S, Santos C, Petranovic D. PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast. Fems Yeast Res. 2016. https://doi.org/10.1093/femsyr/fow007.
Article
Google Scholar
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol. 2015;41(3):295–308.
Article
CAS
Google Scholar
Li T, Huang X, Zhou RB, Liu YF, Li B, Nomura C, Zhao JD. Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp strain PCC 7120. J Bacteriol. 2002;184(18):5096–103.
Article
CAS
Google Scholar
Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28.
Article
CAS
Google Scholar
Gharaghani M, Jafarian H, Hatami M, Shabanzadeh M, Mahmoudabadi AZ. Evaluation of catalase activity of clinical and environmental isolates of Aspergillus species. Iran J Microbiol. 2022;14(1):133–7.
Google Scholar
Nakane T, Asayama K, Kodera K, Hayashibe H, Uchida N, Nakazawa S. Effect of selenium deficiency on cellular and extracellular glutathione peroxidases: immunochemical detection and mRNA analysis in rat kidney and serum. Free Radical Biol Med. 1998;25(4–5):504–11.
Article
CAS
Google Scholar
Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK. Glutathione S-transferase: a versatile protein family. 3 Biotech. 2020. https://doi.org/10.1007/s13205-020-02312-3.
Article
Google Scholar
Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998;1(5):639–48.
Article
CAS
Google Scholar
Cao Y, Wang Y, Dai B, Wang B, Zhang H, Zhu Z, Xu Y, Cao Y, Jiang Y, Zhang G. Trehalose is an important mediator of cap1p oxidative stress response in Candida albicans. Biol Pharm Bull. 2008;31(3):421–5.
Article
CAS
Google Scholar
Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K. Microcolonial fungi on rocks: a Life in constant drought? Mycopathologia. 2013;175(5–6):537–47.
Article
Google Scholar
Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H. Simultaneous accumulation of proline and trehalose in industrial baker’s yeast enhances fermentation ability in frozen dough. J Biosci Bioeng. 2012;113(5):592–5.
Article
CAS
Google Scholar
Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13(4):17R-27R.
Article
CAS
Google Scholar
Yan Z-Y, Zhao M-R, Huang C-Y, Zhang L-J, Zhang J-X. Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microb Cell Fact. 2021. https://doi.org/10.1186/s12934-021-01572-9.
Article
Google Scholar
Du W, Zhai P, Liu S, Zhang Y, Lu L. The copper chaperone CcsA, coupled with superoxide dismutase SodA, mediates the oxidative stress response in Aspergillus fumigatus. Appl Environ Microbiol. 2021. https://doi.org/10.1128/AEM.01013-21.
Article
Google Scholar
Asada R, Watanabe T, Tanaka Y, Kishida M, Furuta M. Trehalose accumulation and radiation resistance due to prior heat stress in Saccharomyces cerevisiae. Arch Microbiol. 2022. https://doi.org/10.1007/s00203-022-02892-z.
Article
Google Scholar
Komina AV, Korostileva KA, Gyrylova SN, Belonogov RN, Ruksha TG. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res. 2012;61(6):655–8.
Article
CAS
Google Scholar
Nishimoto T, Watanabe T, Furuta M, Kataoka M, Kishida M. Roles of catalase and trehalose in the protection from hydrogen peroxide toxicity in Saccharomyces cerevisiae. Biocontrol Sci. 2016;21(3):179–82.
Article
CAS
Google Scholar
Zhang M-K, Tang J, Huang Z-Q, Hu K-D, Li Y-H, Han Z, Chen X-Y, Hu L-Y, Yao G-F, Zhang H. Reduction of Aspergillus niger virulence in apple fruits by deletion of the catalase gene cpeB. J Agric Food Chem. 2018;66(21):5401–9.
Article
CAS
Google Scholar