Lange J, Takors R, Blombach B. Zero-growth bioprocesses: a challenge for microbial production strains and bioprocess engineering. Eng Life Sci. 2017;17:27–35. https://doi.org/10.1002/elsc.201600108.
Article
CAS
Google Scholar
Vassilev I, Averesch NJH, Ledezma P, Kokko M. Anodic electro-fermentation: empowering anaerobic production processes via anodic respiration. Biotechnol Adv. 2021;48:107728. https://doi.org/10.1016/j.biotechadv.2021.107728.
Article
CAS
Google Scholar
Junker BH, Stanik M, Barna C, Salmon P, Buckland BC. Influence of impeller type on mass transfer in fermentation vessels. Bioprocess Eng. 1998;19:403. https://doi.org/10.1007/s004490050540.
Article
CAS
Google Scholar
Lee GH, Hur W, Bremmon CE, Flickinger MC. Lysine production from methanol at 50 °C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng. 1996. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6%3c639::AID-BIT5%3e3.0.CO;2-P.
Article
Google Scholar
Delvigne F, Lecomte J. Foam formation and control in bioreactors. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. Hoboken NJ USA: John Wiley & Sons; 2010. https://doi.org/10.1002/9780470054581.eib326.
Book
Google Scholar
Humbird D, Davis R, McMillan JD. Aeration costs in stirred-tank and bubble column bioreactors. Biochem Eng J. 2017;127:161–6. https://doi.org/10.1016/j.bej.2017.08.006.
Article
CAS
Google Scholar
Nealson KH, Belz A, McKee B. Breathing metals as a way of life: geobiology in action. Antonie Van Leeuwenhoek. 2002;81:215–22. https://doi.org/10.1023/A:1020518818647.
Article
CAS
Google Scholar
Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H. Anaerobic growth of corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol. 2007;75:889–97. https://doi.org/10.1007/s00253-007-0879-y.
Article
CAS
Google Scholar
Tebo BM, Obraztsova AY. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett. 1998;162:193–9. https://doi.org/10.1111/j.1574-6968.1998.tb12998.x.
Article
CAS
Google Scholar
Stanbury P, Whitaker A, Stephen H. Principles of fermentation technology. Amsterdam: Elsevier; 2017. https://doi.org/10.1016/C2013-0-00186-7.
Book
Google Scholar
Lovley DR, Coates JD. Novel forms of anaerobic respiration of environmental relevance. Curr Opin Microbiol. 2000;3:252–6. https://doi.org/10.1016/S1369-5274(00)00085-0.
Article
CAS
Google Scholar
Weusthuis RA, Lamot I, van der Oost J, Sanders JPM. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 2011;29:153–8. https://doi.org/10.1016/j.tibtech.2010.12.007.
Article
CAS
Google Scholar
Hoffmann T, Troup B, Szabo A, Hungerer C, Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett. 1995;131:219–25. https://doi.org/10.1111/j.1574-6968.1995.tb07780.x.
Article
CAS
Google Scholar
Sun G, Sharkova E, Chesnut R, Birkey S, Duggan MF, Sorokin A, et al. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J Bacteriol. 1996;178:1374–85. https://doi.org/10.1128/jb.178.5.1374-1385.1996.
Article
CAS
Google Scholar
Nakano MM, Dailly YP, Zuber P, Clark DP. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol. 1997;179:6749–55. https://doi.org/10.1128/jb.179.21.6749-6755.1997.
Article
CAS
Google Scholar
Nakano MM, Zuber P. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol. 1998. https://doi.org/10.1146/annurev.micro.52.1.165.
Article
Google Scholar
Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50:1–17. https://doi.org/10.1139/w03-076.
Article
CAS
Google Scholar
Gu Y, Xu X, Wu Y, Niu T, Liu Y, Li J, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng. 2018;50:109–21. https://doi.org/10.1016/j.ymben.2018.05.006.
Article
CAS
Google Scholar
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact. 2020;19:173. https://doi.org/10.1186/s12934-020-01436-8.
Article
Google Scholar
Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv. 2014;32:492–503. https://doi.org/10.1016/j.biotechadv.2014.01.002.
Article
CAS
Google Scholar
Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng. 2017;114:1283–9. https://doi.org/10.1002/bit.26243.
Article
CAS
Google Scholar
Förster AH, Beblawy S, Golitsch F, Gescher J. Electrode-assisted acetoin production in a metabolically engineered escherichia coli strain. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-017-0745-9.
Article
Google Scholar
Kim C, Kim MY, Michie I, Jeon BH, Premier GC, Park S, et al. Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-017-0886-x.
Article
Google Scholar
Hu J, Lei P, Mohsin A, Liu X, Huang M, Li L, et al. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact. 2017;16:150. https://doi.org/10.1186/s12934-017-0764-z.
Article
CAS
Google Scholar
Vassilev I, Gießelmann G, Schwechheimer SK, Wittmann C, Virdis B, Krömer JO. Anodic electro-fermentation: anaerobic production of L-lysine by recombinant Corynebacterium glutamicum. Biotechnol Bioeng. 2018;115:1499–508. https://doi.org/10.1002/bit.26562.
Article
CAS
Google Scholar
Lai B, Yu S, Bernhardt PV, Rabaey K, Virdis B, Krömer JO. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol Biofuels. 2016;9:39. https://doi.org/10.1186/s13068-016-0452-y.
Article
CAS
Google Scholar
Nimje VR, Chen C-Y, Chen C-C, Jean J-S, Reddy AS, Fan C-W, et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources. 2009;190:258–63. https://doi.org/10.1016/j.jpowsour.2009.01.019.
Article
CAS
Google Scholar
Averesch NJH, Rothschild LJ. Metabolic engineering of Bacillus subtilis for production of para -aminobenzoic acid—unexpected importance of carbon source is an advantage for space application. Microb Biotechnol. 2019;12:703–14. https://doi.org/10.1111/1751-7915.13403.
Article
CAS
Google Scholar
Määttä L, Hajdu-Rahkama R, Oinonen C, Puhakka JA. Effects of metal extraction liquors from electric vehicle battery materials production on iron and sulfur oxidation by heap bioleaching microorganisms. Miner Eng. 2022;178:107409. https://doi.org/10.1016/j.mineng.2022.107409.
Article
CAS
Google Scholar
Khanongnuch R, Mangayil R, Santala V, Hestnes AG, Svenning MM, Rissanen AJ. Batch experiments demonstrating a two-stage bacterial process coupling methanotrophic and heterotrophic bacteria for 1-alkene production from methane. Front Microbiol. 2022;13:874627. https://doi.org/10.3389/fmicb.2022.874627.
Article
Google Scholar
Priest FG. Systematics and Ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R, editors. Bacillus subtilis and other gram-positive bacteria. Washington DC USA: ASM Press; 2014. https://doi.org/10.1128/9781555818388.ch1.
Chapter
Google Scholar
Clements LD, Miller BS, Streips UN. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol. 2002;25:284–6. https://doi.org/10.1078/0723-2020-00108.
Article
CAS
Google Scholar
Hemmerich J. Fed-batch cultivation in baffled shake flasks: option enables the assessment of bioprocesses in early development. Genet Eng Biotechnol News. 2011;31:52–4. https://doi.org/10.1089/gen.31.14.22.
Article
Google Scholar
Gowthaman MK, Rao KSMSR, Ghildyal NP, Karanth NG. Estimation of KLa in solid-state fermentation using a packed-bed bioreactor. Process Biochem. 1995;30:9–15. https://doi.org/10.1016/0032-9592(95)87002-4.
Article
CAS
Google Scholar
Härtig E, Jahn D. Regulation of the anaerobic metabolism in Bacillus subtilis. Advances in microbial physiology. Amsterdam: Elsevier; 2012. https://doi.org/10.1016/B978-0-12-394423-8.00005-6.
Book
Google Scholar
Nakano MM, Zuber P, Glaser P, Danchin A, Hulett FM. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J Bacteriol. 1996;178:3796–802. https://doi.org/10.1128/jb.178.13.3796-3802.1996.
Article
CAS
Google Scholar
Tran QH, Unden G. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem. 1998;251:538–43. https://doi.org/10.1046/j.1432-1327.1998.2510538.x.
Article
CAS
Google Scholar
Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997;1320:217–34. https://doi.org/10.1016/S0005-2728(97)00034-0.
Article
CAS
Google Scholar
Kabisch J, Pratzka I, Meyer H, Albrecht D, Lalk M, Ehrenreich A, et al. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites. Microb Cell Fact. 2013;12:72. https://doi.org/10.1186/1475-2859-12-72.
Article
CAS
Google Scholar
Dauner M, Storni T, Sauer U. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol. 2001;183:7308–17. https://doi.org/10.1128/JB.183.24.7308-7317.2001.
Article
CAS
Google Scholar
Szenk M, Dill KA, de Graff AMR. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 2017;5:95–104. https://doi.org/10.1016/j.cels.2017.06.005.
Article
CAS
Google Scholar
Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol. 2000;182:3072–80. https://doi.org/10.1128/JB.182.11.3072-3080.2000.
Article
CAS
Google Scholar
Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.00575.
Article
Google Scholar
Chen L, Cao C, Wang S, Varcoe JR, Slade RCT, Avignone-Rossa C, et al. Electron communication of Bacillus subtilis in harsh environments. iScience. 2019;12:260–9. https://doi.org/10.1016/j.isci.2019.01.020.
Article
CAS
Google Scholar
Romero S, Merino E, Bolívar F, Gosset G, Martinez A. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol. 2007;73:5190–8. https://doi.org/10.1128/AEM.00625-07.
Article
CAS
Google Scholar
Tsau J-L, Guffanti AA, Montville TJ. Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl Environ Microbiol. 1992;58:891–4. https://doi.org/10.1128/aem.58.3.891-894.1992.
Article
CAS
Google Scholar
Virdis B, Hoelzle DR, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, et al. Electro-fermentation: sustainable bioproductions steered by electricity. Biotechnol Adv. 2022;59:107950. https://doi.org/10.1016/j.biotechadv.2022.107950.
Article
CAS
Google Scholar
Zhang X, Zhang R, Bao T, Yang T, Xu M, Li H, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol. 2013;40:1067–76. https://doi.org/10.1007/s10295-013-1303-5.
Article
CAS
Google Scholar
Zhang X, Zhang R, Bao T, Rao Z, Yang T, Xu M, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng. 2014;23:34–41. https://doi.org/10.1016/j.ymben.2014.02.002
Article
CAS
Google Scholar
Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol J. 2015;10:1298–306. https://doi.org/10.1002/biot.201400577.
Article
CAS
Google Scholar
Askitosari TD, Berger C, Tiso T, Harnisch F, Blank LM, Rosenbaum MA. Coupling an electroactive Pseudomonas putida KT2440 with bioelectrochemical rhamnolipid production. Microorganisms. 2020;8:1–15. https://doi.org/10.3390/microorganisms8121959.
Article
CAS
Google Scholar