Rui L, Cao L, Chen W, Reardon KF, Wood TK. Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. Appl Environ Microbiol. 2005;71:3995.
Article
CAS
Google Scholar
Zhu Y, Wang Q, Cornwall RG, Shi Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem Rev. 2014;114:8199–256.
Article
CAS
Google Scholar
Panke S, Wubbolts MG, Schmid A, Witholt B. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng. 2015;69:91–100.
Article
Google Scholar
Lukito BR, Sekar BS, Wu S, Li Z. Whole cell-based cascade biotransformation for the production of (S)-mandelic acid from styrene, L-phenylalanine, glucose, or glycerol. Adv Synth Catal. 2019;361:1–10.
Article
Google Scholar
Liu S, Zhang X, Liu F, Xu M, Yang T, Long M, Zhou J, Osire T, Yang S, Rao Z. Designing of a cofactor self-sufficient whole-cell biocatalyst system for production of 1,2-amino alcohols from epoxides. ACS Synth Biol. 2019;8:734–43.
Article
CAS
Google Scholar
Martínková L, Křen V. Biocatalytic production of mandelic acid and analogues: a review and comparison with chemical processes. Appl Microbiol Biotechnol. 2018;102:3893–900.
Article
Google Scholar
Chang TL, Teleshova N, Rapista A, Paluch M, Anderson RA, Waller DP, Zaneveld LJD, Granelli-Piperno A, Klotman ME. SAMMA, a mandelic acid condensation polymer, inhibits dendritic cell-mediated HIV transmission. FEBS Lett. 2007;581:4596–602.
Article
CAS
Google Scholar
Saravanan P, Singh VK. An efficient synthesis of chiral nonracemic diamines: application in asymmetric synthesis. Tetrahedron Lett. 1998;39:167–70.
Article
CAS
Google Scholar
Chen X, Yang C, Wang P, Zhang X, Bao B, Li D, Shi R. Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase. Bioresour Bioprocess. 2017;4:2.
Article
Google Scholar
Surivet J-P, Vatèle J-M. Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron. 1999;55:13011–28.
Article
CAS
Google Scholar
Robinson CJ, Carbonell P, Jervis AJ, Yan C, Hollywood KA, Dunstan MS, Currin A, Swainston N, Spiess R, Taylor S, et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab Eng. 2020;60:168–82.
Article
CAS
Google Scholar
Yutthalekha T, Wattanakit C, Lapeyre V, Nokbin S, Warakulwit C, Limtrakul J, Kuhn A. Asymmetric synthesis using chiral-encoded metal. Nat Commun. 2016;7:12678.
Article
CAS
Google Scholar
Zhao J, Liu Y, Hao A, Xing P. High-throughput synthesis of chiroptical nanostructures from synergistic hydrogen-bonded coassemblies. ACS Nano. 2020;14:2522–32.
Article
CAS
Google Scholar
Lukito BR, Wang Z, Sekar BS, Li Z. Production of ( R )-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. Bioresour Bioprocess. 2021;8:22.
Article
Google Scholar
Reifenrath M, Boles E. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng. 2018;45:246–54.
Article
CAS
Google Scholar
Wu S, Zhou Y, Wang T, Too H-P, Wang DIC, Li Z. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nat Commun. 2016;7:11917.
Article
CAS
Google Scholar
Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metab Eng. 2014;24:30–7.
Article
CAS
Google Scholar
Zhou P, Yao R, Zhang H, Bao J. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Biotechnol Bioeng. 2019;116:2191–9.
Article
CAS
Google Scholar
Li D-H, Lin J-P, Wei D-Z. Improving Gluconobacter oxydans performance in the in situ removal of the inhibitor for asymmetric resolution of racemic 1-phenyl-1,2-ethanediol. Bioresour Technol. 2014;159:327–33.
Article
CAS
Google Scholar
Wei L, Yang X, Gao K, Lin J, Yang S, Hua Q, Wei D. Characterization of Enzymes in the Oxidation of 1,2-Propanediol to D-(-)-Lactic Acid by Gluconobacter oxydans DSM 2003. Mol Biotechnol. 2010;46:26–33.
Article
CAS
Google Scholar
Chao G, Wen Z, Huang Y, Ma C, Ping X. Efficient conversion of 1,2-butanediol to (R)-2-hydroxybutyric acid using whole cells of Gluconobacter oxydans. Bioresour Technol. 2012;115:75–8.
Article
Google Scholar
Hua X, Du G, Zhou X, Nawaz A. A techno-practical method for overcoming the biotoxicity and volatility obstacles of butanol and butyric acid during whole-cell catalysis by Gluconobacter oxydans. Biotechnol Biofuels. 2020;13:102.
Article
CAS
Google Scholar
Li G, Shan X, Zeng W, Yu S, Zhang G, Chen J, Zhou J. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During Gluconobacter oxydans ATCC 9937 Fermentation. Front Bioeng Biotechnol. 2022;10: 918277.
Article
Google Scholar
Zou X, Lin J, Mao X, Zhao S, Ren Y. Biosynthesis of L-Erythrose by assembly of two key enzymes in Gluconobacter oxydans. J Agric Food Chem. 2017;65:7721–5.
Article
CAS
Google Scholar
Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994;36:247–301.
Article
CAS
Google Scholar
Espinosa MI, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun. 2020;11:5564.
Article
CAS
Google Scholar
Ali F, Seshasayee ASN. Dynamics of genetic variation in transcription factors and its implications for the evolution of regulatory networks in Bacteria. Nucleic Acids Res. 2020;48:4100–14.
Article
CAS
Google Scholar
Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K, Rafael Jiménez-Díaz M, Eng T, Radi MS, Simmons BA, Mukhopadhyay A, et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab Eng Commun. 2020;11: e00143.
Article
Google Scholar
Wu Y, Jameel A, Xing X-H, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends biotechnol. 2022;40:38–59.
Article
Google Scholar
Zhu C, You X, Wu T, Li W, Chen H, Cha Y, Zhuo M, Chen B, Li S. Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate. Green Chem. 2022;24:4614.
Article
CAS
Google Scholar
Zhou L, Xu Z, Wen Z, Lu M, Wang Z, Zhang Y, Zhou H, Jin M. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. Bioresource Technol. 2021;329: 124910.
Article
CAS
Google Scholar
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Biofuels. Altered sterol composition renders yeast thermotolerant. Science. 2014;346:75–8.
Article
CAS
Google Scholar
Jin C, Hou W, Yao R, Zhou P, Zhang H, Bao J. Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Bioresource Technol. 2019;289:121623–121623.
Article
CAS
Google Scholar
Wu S, Li A, Chin YS, Li Z. Enantioselective Hydrolysis of Racemic and Meso-Epoxides with Recombinant Escherichia coli Expressing Epoxide Hydrolase from Sphingomonas sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High ee and High Concentration. ACS Catal. 2013;3:752–9.
Article
CAS
Google Scholar
Cheng J-T, Yu J-H, Sun C-F, Cao F, Ying Y-M, Zhan Z-J, Li W-J, Chen X-A, Zhao Q-W, Li Y-Q, et al. A Cell Factory of a Fungicolous Fungus Calcarisporiumarbuscula for efficient production of natural products. ACS Synth Biol. 2021;10:698–706.
Article
CAS
Google Scholar
Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, Tomaleri GP, Singer SW, Hillson NJ, Simmons BA, et al. Jungle Express is a versatile repressor system for tight transcriptional control. Nat Commun. 2018;9:3617.
Article
Google Scholar
Ding N, Yuan Z, Zhang X, Chen J, Zhou S, Deng Y. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. Nucleic Acids Res. 2020;89:10602–13.
Article
Google Scholar
Boer CG, Vaishnav ED, Sadeh R, Abeyta EL, Friedman N, Regev A. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat Biotechnol. 2020;38:56–65.
Article
Google Scholar
Wilson EH, Groom JD, Sarfatis MC, Ford SM, Lidstrom ME, Beck DAC. A computational framework for identifying promoter sequences in nonmodel organisms using RNA-seq Data Sets. ACS Synth Biol. 2021;10:1394–405.
Article
CAS
Google Scholar
Chen Y, Liu L, Yu S, Li J, Zhou J, Chen J. Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Front Bioeng Biotechnol. 2021;9: 673844.
Article
Google Scholar
Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Microb Cell Fact. 2016;15:121.
Article
Google Scholar
Yuan J, Wu M, Lin J, Yang L. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. BMC Biotechnol. 2016;16:42.
Article
Google Scholar
Pullmann P, Weissenborn MJ. Improving the heterologous production of fungal peroxygenases through an episomal Pichia pastoris promoter and signal peptide shuffling system. ACS Synth Biol. 2020;10:1360–72.
Article
Google Scholar
Nora LC, Wehrs M, Kim J, Cheng JF, Tarver A, Simmons BA, Magnuson J, Harmon-Smith M, Silva-Rocha R, Gladden JM, et al. A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides. Microb Cell Fact. 2019;18:117.
Article
Google Scholar
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng. 2019;56:130–41.
Article
CAS
Google Scholar
Santoscoy MC, Jarboe LR. A systematic framework for using membrane metrics for strain engineering. Metab Eng. 2021;66:98–113.
Article
CAS
Google Scholar
Zhou P, Yuan X, Liu H, Qi Y, Chen X, Liu L. Candida glabrata Yap6 Recruits Med2 To Alter Glycerophospholipid Composition and Develop Acid pH Stress Resistance. Appl Environ Microb. 2020;86: e01915.
Article
CAS
Google Scholar
Shin J, Yu J, Park M, Kim C, Kim H, Park Y, Ban C, Seydametova E, Song Y-H, Shin C-S, et al. Endocytosing Escherichia coli as a whole-cell biocatalyst of fatty acids. Acs Synth Biol. 2019;8:1055–66.
Article
CAS
Google Scholar
Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng. 2015;29:180–8.
Article
CAS
Google Scholar
Tan Z, Black W, Yoon JM, Shanks JV, Jarboe LR. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microb Cell Fact. 2017;16:38.
Article
Google Scholar
Lahesaare A, Ainelo H, Teppo A, Kivisaar M, Heipieper HJ, Teras R. LapF and its regulation by Fis affect the cell surface hydrophobicity of Pseudomonas putida. PLoS ONE. 2016;3: e0166078.
Article
Google Scholar
Chen X, Song D, Xu J, Li E, Sun G, Xu M. Role and mechanism of cell-surface hydrophobicity in the adaptation of Sphingobium hydrophobicum to electronic-waste contaminated sediment. Appl Microbiol Biot. 2018;102:2803–15.
Article
CAS
Google Scholar
Lim HG, Fong B, Alarcon G, Magurudeniya HD, Eng T, Szubin R, Olson CA, Palsson BO, Gladden JM, Simmons BA, et al. Generation of ionic liquid tolerant Pseudomonas putida KT2440 strains via adaptive laboratory evolution. Green Chem. 2020;22:5677.
Article
CAS
Google Scholar
Pan X, Tang M, You J, Osire T, Sun C, Fu W, Yi G, Yang T, Yang S-T, Rao Z. PsrA is a novel regulator contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in Serratia marcescens. Nucleic Acids Res. 2022;50:127–48.
Article
CAS
Google Scholar
Warrier T, Kapilashrami K, Argyrou A, Ioerger TR, Little D, Murphy KC, Nandakumar M, Park S, Gold B, Mi J, et al. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E4523-4530.
Article
CAS
Google Scholar
Gupta A, Pande A, Sabrin A, Thapa SS, Gioe BW, Grove A. MarR family transcription factors from Burkholderia species: hidden clues to control of virulence-associated genes. Microbiol Mol Biol R. 2018;83:e00039-e118.
Google Scholar
Huang Y, Suo Y, Shi C, Szlavik J, Shi X-M, Knøchel S. Mutations in gltB and gltC reduce oxidative stress tolerance and biofilm formation in Listeria monocytogenes 4b G. Int J Food Microbiol. 2013;163:223–30.
Article
CAS
Google Scholar
Martin RG, Rosner JL. The AraC transcriptional activators. Curr Opin Microbiol. 2001;4:132–7.
Article
CAS
Google Scholar
Tobes R, Ramos JL. AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res. 2002;30:318–21.
Article
CAS
Google Scholar
Nishino K, Senda Y, Hayashi-Nishino M, Yamaguchi A. Role of the AraC-XyIS family regulator YdeO in multi-drug resistance of Escherichia coli. J Antibiot. 2009;62:251–7.
Article
CAS
Google Scholar
Barraud N, Létoffé S, Beloin C, Vinh J, Chiappetta G, Ghigo J-M. Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress. Biofilms Microbi. 2020;7:34.
Article
Google Scholar
Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure. 2006;14:577–87.
Article
CAS
Google Scholar
Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119–46.
Article
CAS
Google Scholar
Li X-Z, Plésiat P, Nikaidoc H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev. 2015;28:337–418.
Article
Google Scholar
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem Rev. 2021;121:5479–596.
Article
CAS
Google Scholar
Plé C, Tam H-K, Cruz AVD, Compagne N, Jiménez-Castellanos J-C, Müller RT, Pradel E, Foong WE, Malloci G, Ballée A, et al. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nat Commun. 2022;13:115.
Article
Google Scholar
Kusumawardhani H, Furtwängler B, Blommestijn M, Kaltenytė A. Adaptive laboratory evolution restores solvent tolerance in plasmid-cured Pseudomonas putida S12: a molecular analysis. Appl Environ Microb. 2021;87:e00041-e121.
Article
CAS
Google Scholar
Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol. 2005;23:195.
Article
CAS
Google Scholar
Zhou J, Zhang R, Yang T, Liu Q, Zheng J, Wang F, Liu F, Xu M, Zhang X, Rao Z. Relieving Allosteric Inhibition by Designing Active Inclusion Bodies and Coating of the Inclusion Bodies with Fe3O4 Nanomaterials for Sustainable 2-Oxobutyric Acid Production. ACS Catal. 2018;8:8889–901.
Article
CAS
Google Scholar
Yao C, Rudnitzki F, Hüttmann G, Zhang Z, Rahmanzadeh R. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation. Int J Nanomed. 2017;12:5659–72.
Article
CAS
Google Scholar
Loh B, Grant C, Hancock REW. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Ch. 1984;26:546–51.
Article
CAS
Google Scholar
Baars L, Wagner S, Wickström D, Klepsch M, Ytterberg AJ. Effects of SecE Depletion on the Inner and Outer Membrane Proteomes of Escherichia coli. J Bacteriol. 2008;190:24–24.
Article
Google Scholar
Loosdrecht MCMV, Lyklema J, Norde W, Schraa G, Zehnder AJB. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol. 1987;53:1893–7.
Article
Google Scholar
Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. 1980;9:29–33.
Article
CAS
Google Scholar
Hamadi F, Latrache H. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface. Colloids Surf B Biointerfaces. 2008;65:134–9.
Article
CAS
Google Scholar