Bora AP, Gupta DP, Durbha KS. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel. 2020;259: 116262.
Article
CAS
Google Scholar
Musa SD, Zhonghua T, Ibrahim AO, Habib M. China’s energy status: a critical look at fossils and renewable options. Renew Sustain Energy Rev. 2018;81:2281–90.
Article
Google Scholar
Knothe G, Razon LF. Biodiesel fuels. Prog Energy Combust Sci. 2017;58:36–59.
Article
Google Scholar
Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev. 2012;16(4):2070–93.
Article
Google Scholar
Wang LB. Properties of Manchurian apricot (Prunus mandshurica Skv) and Siberian apricot (Prunus sibirica L.) seed kernel oils and evaluation as biodiesel feedstocks. Ind Crop Prod. 2013;50:838–43.
Article
CAS
Google Scholar
Ma Y, Wang S, Liu X, Yu H, Yu D, Li G, et al. Oil content, fatty acid composition and biodiesel properties among natural provenances of Siberian apricot (Prunus sibirica L.) from China. GCB Bioenergy. 2021;13(1):112–32.
Article
CAS
Google Scholar
Wang J, Lin WJ, Yin ZD, Wang LB, Dong SB, An JY, et al. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. Biotechnol Biofuels. 2019;12(1):6.
Article
Google Scholar
Niu J, Hou XY, Fang CL, An JY, Ha DL, Qiu L, et al. Transcriptome analysis of distinct Lindera glauca tissues revealed the differences in the unigenes related to terpenoid biosynthesis. Gene. 2015;599:22–30.
Article
Google Scholar
Qi J, Xiong B, Ju YX, Hao QZ, Zhang ZX. Study on fruit growth regularity and lipid accumulation of Lindera glauca. Chinese Agr Sci Bull. 2015;31(4):29–33.
Google Scholar
Zhu B, Hou X, Niu J, Li P, Fang C, Qiu L, et al. Volatile constituents from the fruits of Lindera glauca (Sieb et Zucc.) with different maturities. J Essent Oil Bear Plants. 2016;19(4):926–35.
Article
CAS
Google Scholar
Chen F, Miao X, Lin Z, Xiu Y, Shi L, Zhang Q, et al. Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control. 2021;130: 108282.
Article
CAS
Google Scholar
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, et al. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. Biotechnol Biofuels. 2017;10(1):1–20.
Article
Google Scholar
Wang R, Hanna MA, Zhou WW, Bhadury PS, Chen Q, Song BA, et al. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour Technol. 2011;102(2):1194–9.
Article
CAS
Google Scholar
Guo JY, Li HY, Fan SQ, Liang TY, Yu HY, Li JR, et al. Genetic variability of biodiesel properties in some Prunus L.(Rosaceae) species collected from Inner Mongolia. China Ind Crop Prod. 2015;76:244–8.
Article
CAS
Google Scholar
Wang LB, Yu HY, He XH, Liu RY. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. J Fuel Chem Technol. 2012;40(4):397–404.
Article
CAS
Google Scholar
Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16(3):358–64.
Article
CAS
Google Scholar
Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci. 2011;108(30):12527–32.
Article
CAS
Google Scholar
Bates PD. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochimica Biophysica Acta. 2016;1861(9):1214–25.
Article
CAS
Google Scholar
Yaşar F. Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel. 2020;264: 116817.
Article
Google Scholar
Singh D, Sharma D, Soni SL, Sharma S, Kumari D. Chemical compositions, properties, and standards for different generation biodiesels: a review. Fuel. 2019;253:60–71.
Article
CAS
Google Scholar
Sakthivel R, Ramesh K, Purnachandran R, Mohamed SP. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sustain Energy Rev. 2018;82:2970–92.
Article
CAS
Google Scholar
Lin C-Y, Lin H-A, Hung L-B. Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel. 2006;85(12–13):1743–9.
Article
CAS
Google Scholar
Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A, Naik D, et al. Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture. Plant Physiol. 2015;168(3):828–48.
Article
CAS
Google Scholar
Niu J, An JY, Wang LB, Fang CL, Ha DL, Fu CY, et al. Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot (Prunus sibirica L.) seed kernels for the development of woody biodiesel. Biotechnol Biofuels. 2015;8(1):29.
Article
Google Scholar
Linka N, Weber AP. Intracellular metabolite transporters in plants. Mol Plant. 2010;3(1):21–53.
Article
CAS
Google Scholar
Andriotis VM, Kruger NJ, Pike MJ, Smith AM. Plastidial glycolysis in developing Arabidopsis embryos. New Phytol. 2010;185(3):649–62.
Article
CAS
Google Scholar
Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, et al. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol. 2015;13(2): e1002053.
Article
Google Scholar
Tian Y, Lv X, Xie G, Zhang J, Xu Y, Chen F. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis. Biochem Biophys Res Commun. 2018;500(2):370–5.
Article
CAS
Google Scholar
Tan X-l, Zheng X-f, Zhang Z-y, Wang Z, Xia H-c, Lu C, et al. Long chain acyl-coenzyme A synthetase 4 (BnLACS4) gene from Brassica napus enhances the yeast lipid contents. J Integ Agric. 2014;13(1):54–62.
Article
CAS
Google Scholar
Bates PD, Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2012;3:147.
Article
Google Scholar
Lu CF, Xin ZG, Ren ZH, Miquel M. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA. 2009;106(44):18837–42.
Article
CAS
Google Scholar
Zhang M, Fan J, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–901.
Article
CAS
Google Scholar
Seiler GJ, Gulya T, Kong G, Thompson S, Mitchell J. Oil concentration and fatty-acid profile of naturalized Helianthus annuus populations from Australia. Genet Resour Crop Evol. 2018;65(8):2215–29.
Article
CAS
Google Scholar
Kaushik N, Bhardwaj D. Screening of Jatropha curcas germplasm for oil content and fatty acid composition. Biomass Bioenerg. 2013;58:210–8.
Article
CAS
Google Scholar
Hoseini SS, Najafi G, Ghobadian B, Mamat R, Ebadi MT, Yusaf T. Ailanthus altissima (tree of heaven) seed oil: characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel. 2018;220:621–30.
Article
CAS
Google Scholar
Amalfitano C, Golubkina NA, Del Vacchio L, Russo G, Cannoniero M, Somma S, et al. Yield, antioxidant components, oil content, and composition of onion seeds are influenced by planting time and density. Plants. 2019;8(8):293.
Article
CAS
Google Scholar
Liu P, Zhang LN, Wang XS, Gao JY, Yi JP, Deng RX. Characterization of Paeonia ostii seed and oil sourced from different cultivation areas in China. Ind Crop Prod. 2019;133:63–71.
Article
CAS
Google Scholar
Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–8.
Article
CAS
Google Scholar
Mohan MR, Jala RCR, Kaki SS, Prasad R, Rao B. Swietenia mahagoni seed oil: a new source for biodiesel production. Ind Crop Prod. 2016;90:28–31.
Article
CAS
Google Scholar
Lovato L, Pelegrini BL, Rodrigues J, de Oliveira AJB, Ferreira ICP. Seed oil of Sapindus saponaria L. (Sapindaceae) as potential C16 to C22 fatty acids resource. Biomass Bioenerg. 2014;60:247–51.
Article
CAS
Google Scholar
Yu HY, Fan SQ, Bi QX, Wang SX, Hu XY, Chen MY, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production. Ind Crop Prod. 2017;97:425–30.
Article
CAS
Google Scholar
Rodríguez-Rodríguez MF, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crop Prod. 2013;50:673–9.
Article
Google Scholar
Jiang X, Zhao J, liu P, Wang K, Xu J, Jiang J. Research progress of fatty acid composition, purification and application of woody oil. Biomass Chem Eng. 2022;56(2):60–8.
Google Scholar
Lu L, Jiang D, Fu J, Zhuang D, Huang Y, Hao M. Evaluating energy benefit of Pistacia chinensis based biodiesel in China. Renew Sustain Energy Rev. 2014;35:258–64.
Article
Google Scholar
Ma Y, Bi Q, Li G, Liu X, Fu G, Zhao Y, et al. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China. Ind Crop Prod. 2020;151: 112487.
Article
CAS
Google Scholar
Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, et al. Comparative deep transcriptional profiling of four developing oilseeds. Plant J. 2011;68(6):1014–27.
Article
CAS
Google Scholar
Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman KD, et al. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L seeds. Plant J. 2018;94(6):915–32.
Article
CAS
Google Scholar
Weber AP, Schwacke R, Flügge U-I. Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol. 2005;56:133–64.
Article
Google Scholar
Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, et al. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol Biofuels. 2013;6(1):72.
Article
CAS
Google Scholar
Schwender J, Ohlrogge JB, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem. 2003;278(32):29442–53.
Article
CAS
Google Scholar
Schwender J, Shachar-Hill Y, Ohlrogge JB. Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem. 2006;281(45):34040–7.
Article
CAS
Google Scholar
Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, et al. A non-invasive platform for imaging and quantifying oil storage in sub-millimetre tobacco seed. Plant Physiol. 2013;161(2):583–93.
Article
CAS
Google Scholar
Lee E-J, Oh M, Hwang J-U, Li-Beisson Y, Nishida I, Lee Y. Seed-specific overexpression of the pyruvate transporter BASS2 increases oil content in Arabidopsis seeds. Front Plant Sci. 2017;8:194.
Article
Google Scholar
Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature. 2004;432(7018):779–82.
Article
CAS
Google Scholar
Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog Lipid Res. 2002;41(2):182–96.
Article
CAS
Google Scholar
Hutchings D, Rawsthorne S, Emes MJ. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J Exp Bot. 2005;56(412):577–85.
Article
CAS
Google Scholar
Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, et al. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol. 2013;162(3):1337–58.
Article
CAS
Google Scholar
Mai Y, Huo K, Yu H, Zhou N, Shui L, Liu Y, et al. Using lipidomics to reveal details of lipid accumulation in developing Siberian apricot (Prunus sibirica L.) seed kernels. GCB Bioenergy. 2020;12(7):539–52.
Article
CAS
Google Scholar
Pham A-T, Shannon JG, Bilyeu KD. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet. 2012;125(3):503–15.
Article
CAS
Google Scholar
Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 2012;160(3):1530–9.
Article
CAS
Google Scholar
Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants. Plant J. 2008;54(4):640–55.
Article
CAS
Google Scholar
Lager I, Yilmaz JL, Zhou XR, Jasieniecka K, Kazachkov M, Wang P, et al. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem. 2013;288(52):36902–14.
Article
CAS
Google Scholar
Shockey J, Regmi A, Cotton K, Adhikari N, Browse J, Bates PD. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol. 2016;170(1):163–79.
Article
CAS
Google Scholar
Bates PD, Browse J. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J. 2011;68(3):387–99.
Article
CAS
Google Scholar
Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, et al. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnol Biofuels. 2016;9(1):136.
Article
Google Scholar
Tang M, Guschina IA, O’Hara P, Slabas AR, Quant PA, Fawcett T, et al. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. New Phytol. 2012;196(2):414–26.
Article
CAS
Google Scholar
Zhang TT, He H, Xu CJ, Fu Q, Tao YB, Xu R, et al. Overexpression of type 1 and 2 diacylglycerol acyltransferase genes (JcDGAT1 and JcDGAT2) enhances oil production in the woody perennial biofuel plant Jatropha curcas. Plants. 2021;10(4):119.
Article
Google Scholar
Misra A, Khan K, Niranjan A, Nath P, Sane VA. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry. 2013;96:37–45.
Article
CAS
Google Scholar
Xu R, Yang T, Wang R, Liu A. Characterisation of DGAT1 and DGAT2 from Jatropha curcas and their functions in storage lipid biosynthesis. Funct Plant Biol. 2014;41(3):321–9.
Article
CAS
Google Scholar
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, et al. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. Biotechnol Biofuels. 2016;9:226.
Article
Google Scholar
Wang Z, Huang W, Chang J, Sebastian A, Li Y, Li H, et al. Overexpression of SiDGAT1, a gene encoding acyl-CoA:diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic arabidopsis and soybean. Plant Cell Tiss Org Cult. 2014;119(2):399–410.
Article
CAS
Google Scholar
Torabi S, Sukumaran A, Dhaubhadel S, Johnson SE, LaFayette P, Parrott WA, et al. Effects of type I diacylglycerol O-acyltransferase (DGAT1) genes on soybean (Glycine max L.) seed composition. Sci Rep. 2021;11(1):2556.
Article
CAS
Google Scholar
Regmi A, Shockey J, Kotapati HK, Bates PD. Oil-producing metabolons containing DGAT1 use separate substrate pools from those containing DGAT2 or PDAT. Plant Physiol. 2020;184(2):720–37.
Article
CAS
Google Scholar
Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, et al. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol. 2019;242: 153019.
Article
CAS
Google Scholar
Wc Y, Fc L, Shan S, Kumar D, Musa H, Appleton DR, et al. WRI1–1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J. 2017;91(1):97–113.
Article
Google Scholar
Adhikari ND, Bates PD, Browse J. WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds. Plant Physiol. 2016;171(1):179–91.
Article
CAS
Google Scholar
Bhattacharya S, Das N, Maiti MK. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. Plant Physiol Biochem. 2016;107:204–13.
Article
CAS
Google Scholar
Elahi N, Duncan RW, Stasolla C. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Plant Physiol Biochem. 2016;100:52–63.
Article
CAS
Google Scholar
Manan S, Ahmad MZ, Zhang G, Chen B, Haq BU, Yang J, et al. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development. Front Plant Sci. 2017;8:1604.
Article
Google Scholar
Ye J, Wang C, Sun Y, Qu J, Mao H, Chua N-H. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas. Front Plant Sci. 2018;9:1479.
Article
Google Scholar
Vogel PA, Bayon de Noyer S, Park H, Nguyen H, Hou L, Changa T, et al. Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Plant Biotechnol J. 2019;17:1–11.
Article
Google Scholar
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. J Integr Plant Biol. 2019;61(5):564–80.
Article
CAS
Google Scholar
Pelletier JM, Kwong RW, Park S, Le BH, Baden R, Cagliari A, et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA. 2017;114(32):E6710–9.
Article
CAS
Google Scholar
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, et al. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). Plant Biotechnol J. 2020;18(1):155–71.
Article
CAS
Google Scholar
Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production. Prog Lipid Res. 2010;49(3):235–49.
Article
CAS
Google Scholar
Hofvander P, Ischebeck T, Turesson H, Kushwaha SK, Feussner I, Carlsson AS, et al. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnol J. 2016;14(9):1883–98.
Article
CAS
Google Scholar
Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50(5):825–38.
Article
CAS
Google Scholar
Jo L, Pelletier JM, Hsu S-W, Baden R, Goldberg RB, Harada JJ. Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development. Proc Natl Acad Sci. 2020;117(2):1223.
Article
CAS
Google Scholar
Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, et al. Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Front Plant Sci. 2018;9:260.
Article
Google Scholar
Niu J, Chen Y, An J, Hou X, Cai J, Wang J, et al. Integrated transcriptome sequencing and dynamic analysis reveal carbon source partitioning between terpenoid and oil accumulation in developing Lindera glauca fruits. Sci Rep. 2015;5(1):1–12.
Article
Google Scholar