Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology 2007, 74: 937-953. 10.1007/s00253-006-0827-2
Article
Google Scholar
Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae . Journal of Chemical Technology & Biotechnology 2007, 82: 340-349. 10.1002/jctb.1676
Article
CAS
Google Scholar
Chu BC, Lee H: Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 2007.
Google Scholar
Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 2006, 126: 488-98. 10.1016/j.jbiotec.2006.05.001
Article
Google Scholar
Olsson L, Soerensen HR, Dam BP, Christensen H, Krogh KM, Meyer AS: Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Biochem Biotechnol 2006, 129–132: 117-129. 10.1385/ABAB:129:1:117
Article
Google Scholar
Sedlak M, Ho NW: Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 2004, 113–116: 403-416. 10.1385/ABAB:114:1-3:403
Article
Google Scholar
Hahn-Hägerdal B, Pamment N: Microbial pentose metabolism. Appl Biochem Biotechnol 2004, 113–116: 1207-1209. 10.1385/ABAB:116:1-3:1207
Article
Google Scholar
Katahira S, Mizuike A, Fukuda H, Kondo A: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006, 72: 1136-1143. 10.1007/s00253-006-0402-x
Article
CAS
Google Scholar
Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3
Article
CAS
Google Scholar
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66: 10-26. 10.1007/s00253-004-1642-2
Article
CAS
Google Scholar
Verduyn C, Postma E, Scheffers WA, Van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992, 8: 501-517. 10.1002/yea.320080703
Article
CAS
Google Scholar
Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Liden G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 2006, 23: 455-464. 10.1002/yea.1370
Article
CAS
Google Scholar
Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW: Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 2004, 31: 345-352.
Article
CAS
Google Scholar
Larsson S, Nilvebrant NO, Jonsson LJ: Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 2001, 57: 167-174.
Article
CAS
Google Scholar
Larsson S, Cassland P, Jonsson LJ: Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 2001, 67: 1163-1170. 10.1128/AEM.67.3.1163-1170.2001
Article
CAS
Google Scholar
Modig T, Almeida JRM, Gorwa-Grauslund MF, Liden G: Variability of Saccharomyces cerevisiae strain response to lignocellulose hydrolysate. Biotechnology and Bioengineering 2008. 10.1002/bit.21789
Google Scholar
Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Liden G: Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 2005, 71: 7866-7871. 10.1128/AEM.71.12.7866-7871.2005
Article
CAS
Google Scholar
Almeida JRM, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF: NADH- vs. NADPH-coupled reduction of 5-hydroxymethyl-furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008,78(6):939-45. 101007/s00253-008-1364
Article
CAS
Google Scholar
Laadan B, Almeida JR, Radstrom P, Hahn-Hägerdal B, Gorwa-Grauslund M: Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 2008, 25: 191-198. 10.1002/yea.1578
Article
CAS
Google Scholar
Wahlbom CF, van Zyl WH, Jonsson LJ, Hahn-Hägerdal B, Otero RR: Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 2003, 3: 319-326. 10.1016/S1567-1356(02)00206-4
Article
CAS
Google Scholar
Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA: Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 1985, 226: 669-677.
Article
CAS
Google Scholar
Jeppsson M, Traff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF: Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 2003, 3: 167-175. 10.1016/S1567-1356(02)00186-1
Article
CAS
Google Scholar
Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H: Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis . Applied Microbiology and Biotechnology 1988, 29: 148-154.
Article
CAS
Google Scholar
Eisenthal R: Enzyme Assays: A Practical Approach. Oxford: Oxford University Press; 1992.
Google Scholar
Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP: Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 1991, 109: 89-97. 10.1016/0378-1119(91)90592-Y
Article
CAS
Google Scholar
Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttila M, Kerasnen S: Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 1991, 9: 1090-1095. 10.1038/nbt1191-1090
Article
CAS
Google Scholar
Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, Yoshida T: Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 1991, 28–29: 327-340. 10.1007/BF02922612
Article
Google Scholar
Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G: Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae . Appl Microbiol Biotechnol 2000, 53: 701-708. 10.1007/s002530000328
Article
CAS
Google Scholar
Modig T, Liden G, Taherzadeh MJ: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 2002, 363: 769-776. 10.1042/0264-6021:3630769
Article
CAS
Google Scholar
Taherzadeh MJ, Liden G, Gustafsson L, Niklasson C: The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 1996, 46: 176-182. 10.1007/s002530050801
Article
CAS
Google Scholar
Nilsson A, Taherzadeh MJ, Liden G: Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol 2001, 89: 41-53. 10.1016/S0168-1656(01)00283-8
Article
CAS
Google Scholar
Smiley K, Bolen P: Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus . Biotechnol Lett 1982., 9:
Google Scholar
Wahlbom CF, Hahn-Hägerdal B: Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae . Biotechnol Bioeng 2002, 78: 172-178. 10.1002/bit.10188
Article
CAS
Google Scholar
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B: Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 2000, 66: 3381-3386. 10.1128/AEM.66.8.3381-3386.2000
Article
CAS
Google Scholar
Westhuizen TJ, Pretorius IS: The value of electrophoretic fingerprinting and karyotyping in wine yeast breeding programmes. Antonie Van Leeuwenhoek 1992, 61: 249-257. 10.1007/BF00713932
Article
Google Scholar
Entian K-D, Koetter P: Yeast mutant and plasmid collections. Academic Press, London, United Kingdom; 1998.
Book
Google Scholar