Goddijn OJM, Pen J: Plants as bioreactors. Trends Biotechnol 1995, 13: 379-387. 10.1016/S0167-7799(00)88985-4
Article
CAS
Google Scholar
Aspegren K, Mannonen L, Ritala A, Puupponenpimia R, Kurten U, Salmenkalliomarttila M, Kauppinen V, Teeri TH: Secretion of a heat-stable fungal beta-glucanase from transgenic, suspension-cultured barley cells. Mol Breeding 1995, 1: 91-99. 10.1007/BF01682092
Article
CAS
Google Scholar
Herbers K, Wilke I, Sonnewald U: A thermostable xylanase from clostridium-thermocellum expressed at high-levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio-Technol 1995, 13: 63-66. 10.1038/nbt0195-63
Article
CAS
Google Scholar
Laliberte JF, Nicolas O, Durand S, Morosoli R: The xylanase introns from cryptococcus-albidus are accurately spliced in transgenic tobacco plants. Plant Mol Biol 1992, 18: 447-451. 10.1007/BF00040660
Article
CAS
Google Scholar
Pen J, Molendijk L, Quax WJ, Sijmons PC, Vanooyen AJJ, Vandenelzen PJM, Rietveld K, Hoekema A: Production of active bacillus-licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio-Technol 1992, 10: 292-296. 10.1038/nbt0392-292
Article
CAS
Google Scholar
Pen J, Verwoerd TC, Vanparidon PA, Beudeker RF, Vandenelzen PJM, Geerse K, Vanderklis JD, Versteegh HAJ, Vanooyen AJJ, Hoekema A: Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio-Technol 1993, 11: 811-814. 10.1038/nbt0793-811
Article
CAS
Google Scholar
Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ, Burgess RR: An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann Ny Acad Sci 1994, 721: 234-244. 10.1111/j.1749-6632.1994.tb47395.x
Article
CAS
Google Scholar
Phillipson BA: Expression of a hybrid (1–3,1-4)-beta-glucanase in barley protoplasts. Plant Sci 1993, 91: 195-206. 10.1016/0168-9452(93)90142-M
Article
CAS
Google Scholar
Downing M, Eaton LM, Graham RL, Langholtz MH, Perlack RD, Turhollow AF Jr, Stokes B, Brandt CC: U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Oak Ridge, Tennessee: Oak Ridge National Laboratory; 2011.
Book
Google Scholar
Gan Q, Allen SJ, Taylor G: Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem 2003, 38: 1003-1018. 10.1016/S0032-9592(02)00220-0
Article
CAS
Google Scholar
Sticklen MB: Expediting the biofuels agenda via genetic manipulations of cellulosic bioenergy crops. Biofuel Bioprod Bior 2009, 3: 448-455. 10.1002/bbb.157
Article
CAS
Google Scholar
Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR: In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnology for biofuels 2011, 4: 1. 10.1186/1754-6834-4-1
Article
CAS
Google Scholar
Chou HL, Dai Z, Hsieh CW, Ku MS: High level expression of Acidothermus cellulolyticus beta-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnology for biofuels 2011, 4: 58. 10.1186/1754-6834-4-58
Article
CAS
Google Scholar
Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 2013, 27: 77-93.
Article
CAS
Google Scholar
Kumar S, Tsai CJ, Nussinov R: Factors enhancing protein thermostability. Protein Eng 2000, 13: 179-191. 10.1093/protein/13.3.179
Article
CAS
Google Scholar
Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B: Effective factors in thermostability of thermophilic proteins. Biophys Chem 2006, 119: 256-270. 10.1016/j.bpc.2005.09.018
Article
CAS
Google Scholar
Sandgren M, Gualfetti PJ, Shaw A, Gross LS, Saldajeno M, Day AG, Jones TA, Mitchinson C: Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Sci 2003, 12: 848-860. 10.1110/ps.0237703
Article
CAS
Google Scholar
Berezovsky IN, Shakhnovich EI: Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 2005, 102: 12742-12747. 10.1073/pnas.0503890102
Article
CAS
Google Scholar
Ma BG, Goncearenco A, Berezovsky IN: Thermophilic adaptation of protein complexes inferred from proteomic homology modeling. Structure 2010, 18: 819-828. 10.1016/j.str.2010.04.004
Article
CAS
Google Scholar
Gromiha MM, Oobatake M, Sarai A: Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999, 82: 51-67. 10.1016/S0301-4622(99)00103-9
Article
CAS
Google Scholar
Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 2002, 5: 53-63. 10.1007/s10123-002-0062-3
Article
Google Scholar
Sarkanen KV, Ludwig CH: Lignins: occurrence, formation, structure and reactions. J Polym Sci B 1972, 10: 228-230. 10.1002/pol.1972.110100315
Article
Google Scholar
Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis; and enzymatic hydrolysis for corn stover. Golden, Colorado: National Renewable Energy Laboratory; 2002.
Google Scholar
Tabil L, Phani A, Mahdi K: Biofuel's engineering process technology. In Biomass feedstock pre-processing-Part 2: Densification. Edited by: Santos Bernades MA. Croatia: InTech; 2011:439-464.
Google Scholar
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, et al.: The path forward for biofuels and biomaterials. Science 2006, 311: 484-489. 10.1126/science.1114736
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96: 673-686. 10.1016/j.biortech.2004.06.025
Article
CAS
Google Scholar
Sainz MB: Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev-Pl 2009, 45: 314-329. 10.1007/s11627-009-9210-1
Article
CAS
Google Scholar
Korkegian A, Black ME, Baker D, Stoddard BL: Computational thermostabilization of an enzyme. Science 2005, 308: 857-860. 10.1126/science.1107387
Article
CAS
Google Scholar
Unsworth LD, van der Oost J, Koutsopoulos S: Hyperthermophilic enzymes–stability, activity and implementation strategies for high temperature applications. FEBS J 2007, 274: 4044-4056. 10.1111/j.1742-4658.2007.05954.x
Article
CAS
Google Scholar
Turner P, Mamo G, Karlsson EN: Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007, 6: 9. 10.1186/1475-2859-6-9
Article
Google Scholar
Leigh JA, Albers SV, Atomi H, Allers T: Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011, 35: 577-608. 10.1111/j.1574-6976.2011.00265.x
Article
CAS
Google Scholar
Hood EE: From green plants to industrial enzymes. Enzyme Microb Technol 2002, 30: 279-283. 10.1016/S0141-0229(01)00502-6
Article
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109: 1083-1087. 10.1002/bit.24370
Article
CAS
Google Scholar
Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD, Nieves RA, Sheehan JJ, Thomas SR, Vinzant TB, Zhang M: Advanced bioethanol production technologies: a perspective. Acs Sym Ser 1997, 666: 2-45.
Article
CAS
Google Scholar
Park SH, Ransom C, Mei CS, Sabzikar R, Qi CF, Chundawat S, Dale B, Sticklen M: The quest for alternatives tomicrobial cellulase mix production: corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. Chem Technol Biotechnol 2011, 86: 633-641. 10.1002/jctb.2584
Article
CAS
Google Scholar
Mei CS, Park SH, Sabzikar R, Qi CF, Ransom C, Sticklen M: Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. Chem Technol Biotechnol 2009, 84: 689-695. 10.1002/jctb.2100
Article
CAS
Google Scholar
D’Amico S, Marx JC, Gerday C, Feller G: Activity-stability relationships in extremophilic enzymes. J Biol Chem 2003, 278: 7891-7896. 10.1074/jbc.M212508200
Article
Google Scholar
Zavodszky P, Kardos J, Petsko GA, Svingor: Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 1998, 95: 7406-7411. 10.1073/pnas.95.13.7406
Article
CAS
Google Scholar
Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL: Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 2009, 106: 11937-11942. 10.1073/pnas.0904191106
Article
CAS
Google Scholar
Schweiker KL, Makhatadze GI: Protein stabilization by the rational design of surface charge-charge interactions. Methods Mol Biol 2009, 490: 261-283. 10.1007/978-1-59745-367-7_11
Article
CAS
Google Scholar
Lazar GA, Marshall SA, Plecs JJ, Mayo SL, Desjarlais JR: Designing proteins for therapeutic applications. Curr Opin Struct Biol 2003, 13: 513-518. 10.1016/S0959-440X(03)00104-0
Article
CAS
Google Scholar
Schoemaker HE, Mink D, Wubbolts MG: Dispelling the myths–biocatalysis in industrial synthesis. Science 2003, 299: 1694-1697. 10.1126/science.1079237
Article
CAS
Google Scholar
Sterner R, Liebl W: Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 2001, 36: 39-106. 10.1080/20014091074174
Article
CAS
Google Scholar
Dahiyat BI: In silico design for protein stabilization. Curr Opin Biotechnol 1999, 10: 387-390. 10.1016/S0958-1669(99)80070-6
Article
CAS
Google Scholar
Chakravarty S, Varadarajan R: Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 2002, 41: 8152-8161. 10.1021/bi025523t
Article
CAS
Google Scholar
Hsiang-Chuan L, Yu-Chieh T, Bai-Cheng J, Tung-Sheng L: A Novel Prediction Algorithm of Thermostable Proteins by Using Hurst Exponent and Choquet Integral Regression Model. In Eighth International Conference on Intelligent Systems Design and Applications: 26–28 Nov. 2008; Kaohsiung. Edited by: Pan JS, Abraham A, Chang CC. Kaohsiung: IEEE; 2008:147-152.
Google Scholar
Razvi A, Scholtz JM: Lessons in stability from thermophilic proteins. Protein Sci 2006, 15: 1569-1578. 10.1110/ps.062130306
Article
CAS
Google Scholar
Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV: Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007, 23: 2231-2238. 10.1093/bioinformatics/btm345
Article
CAS
Google Scholar
Panasik N, Brenchley JE, Farber GK: Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases. Biochim Biophys Acta 2000, 1543: 189-201. 10.1016/S0167-4838(00)00182-5
Article
CAS
Google Scholar
Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH: Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 2011, 77: 1436-1442. 10.1128/AEM.01802-10
Article
CAS
Google Scholar
Yennamalli RM, Rader AJ, Wolt JD, Sen TZ: Thermostability in endoglucanases is fold-specific. BMC Struct Biol 2011, 11: 10. 10.1186/1472-6807-11-10
Article
CAS
Google Scholar
Liang C, Fioroni M, Rodriguez-Ropero F, Xue Y, Schwaneberg U, Ma Y: Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 2011, 154: 46-53. 10.1016/j.jbiotec.2011.03.025
Article
CAS
Google Scholar
Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK: Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 2010, 70: 1-55.
Article
CAS
Google Scholar
Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH: A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 2009, 106: 5610-5615. 10.1073/pnas.0901417106
Article
CAS
Google Scholar
Durrant JD, McCammon JA: Molecular dynamics simulations and drug discovery. BMC Biol 2011, 9: 71. 10.1186/1741-7007-9-71
Article
CAS
Google Scholar
Bahar I, Lezon TR, Yang LW, Eyal E: Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 2010, 39: 23-42. 10.1146/annurev.biophys.093008.131258
Article
CAS
Google Scholar
Yennamalli RM, Wolt JD, Sen TZ: Dynamics of endoglucanase catalytic domains: implications towards thermostability. J Biomol Struct Dyn 2011, 29: 509-526. 10.1080/07391102.2011.10507402
Article
CAS
Google Scholar
Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold FH: SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 2009, 284: 26229-26233. 10.1074/jbc.C109.034058
Article
CAS
Google Scholar
Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF: Protein flexibility predictions using graph theory. Proteins 2001, 44: 150-165. 10.1002/prot.1081
Article
CAS
Google Scholar
Plaxco KW, Simons KT, Baker D: Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 1998, 277: 985-994. 10.1006/jmbi.1998.1645
Article
CAS
Google Scholar
Rader AJ, Yennamalli RM, Harter AK, Sen TZ: A rigid network of long-range contacts increases thermostability in a mutant endoglucanase. J Biomol Struct Dyn 2012, 30: 628-637. 10.1080/07391102.2012.689696
Article
CAS
Google Scholar
Nieves R, Chou Y-C, Himmel M, Thomas S: Quantitation ofAcidothermus cellulolyticus E1 endoglucanase andThermomonospora fusca E3 exoglucanase using enzyme-linked immunosorbent assay (ELISA). Appl Biochem Biotechnol 1995, 51–52: 211-223.
Article
Google Scholar
Lindenmuth BE, McDonald KA: Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein Expr Purif 2011, 77: 153-158. 10.1016/j.pep.2011.01.006
Article
CAS
Google Scholar
Ziegelhoffer T, Raasch J, Austin-Phillips S: Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breeding 2001, 8: 147-158. 10.1023/A:1013338312948
Article
CAS
Google Scholar
Dai Z, Hooker BS, Anderson DB, Thomas SR: Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 2000, 9: 43-54. 10.1023/A:1008922404834
Article
CAS
Google Scholar
Dai Z, Hooker BS, Quesenberry RD, Thomas SR: Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 2005, 14: 627-643. 10.1007/s11248-005-5695-5
Article
CAS
Google Scholar
Teymouri F, Alizadeh H, Laureano-Perez L, Dale B, Sticklen M: Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl Biochem Biotechnol 2004, 113–116: 1183-1191.
Article
Google Scholar
Ziegelhoffer T, Raasch JA, Austin-Phillips S: Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 2009, 7: 527-536. 10.1111/j.1467-7652.2009.00421.x
Article
CAS
Google Scholar
Biswas GCG, Ransom C, Sticklen M: Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 2006, 171: 617-623. 10.1016/j.plantsci.2006.06.004
Article
CAS
Google Scholar
Park S-H, Ransom C, Mei C, Sabzikar R, Qi C, Chundawat S, Dale B, Sticklen M: The quest for alternatives to microbial cellulase mix production: corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. J Chem Tech Biotechnol 2011, 86: 633-641. 10.1002/jctb.2584
Article
CAS
Google Scholar
Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M: Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 2007, 137: 207-219.
Google Scholar
Ziegler M, Thomas S, Danna K: Accumulation of a thermostable endo-1,4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breeding 2000, 6: 37-46. 10.1023/A:1009667524690
Article
CAS
Google Scholar
Dai Z, Hooker B, Anderson D, Thomas S: Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breeding 2000, 6: 277-285. 10.1023/A:1009653011948
Article
CAS
Google Scholar
Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M: Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic research 2007, 16: 739-749. 10.1007/s11248-006-9064-9
Article
CAS
Google Scholar
Sun Y, Cheng JJ, Himmel ME, Skory CD, Adney WS, Thomas SR, Tisserat B, Nishimura Y, Yamamoto YT: Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol 2007, 98: 2866-2872. 10.1016/j.biortech.2006.09.055
Article
CAS
Google Scholar
Walker LP, Wilson DB: Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 1991, 36: 3-14. 10.1016/0960-8524(91)90095-2
Article
CAS
Google Scholar