Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010, 28: 817-830.
Article
CAS
Google Scholar
Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74: 937-953. 10.1007/s00253-006-0827-2
Article
Google Scholar
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87: 1303-1315. 10.1007/s00253-010-2707-z
Article
CAS
Google Scholar
Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hagerdal B, Sauer U: Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 2004, 87: 90-98. 10.1002/bit.20094
Article
CAS
Google Scholar
Ho NWY, Chen ZD: Stable recombinant yeasts capable of effective fermentation of both glucose and xylose. 1997. PCT Patent No. WO97/42307
Google Scholar
Ho NWY, Chen ZD, Brainard AP: Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 1998, 64: 1852-1859.
CAS
Google Scholar
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B: Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 2000, 66: 3381-3386. 10.1128/AEM.66.8.3381-3386.2000
Article
CAS
Google Scholar
Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research 2005, 5: 399-409. 10.1016/j.femsyr.2004.09.010
Article
CAS
Google Scholar
Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84: 37-53. 10.1007/s00253-009-2101-x
Article
CAS
Google Scholar
Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008, 99: 5270-5295. 10.1016/j.biortech.2007.11.013
Article
CAS
Google Scholar
Palmqvist E, Hahn-Hagerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3
Article
CAS
Google Scholar
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66: 10-26. 10.1007/s00253-004-1642-2
Article
CAS
Google Scholar
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 2007, 82: 340-349. 10.1002/jctb.1676
Article
CAS
Google Scholar
Yang B, Wyman CE: Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuels, Bioprod Biorefin 2008, 2: 26-40. 10.1002/bbb.49
Article
CAS
Google Scholar
Palmqvist E, Hahn-Hagerdal B: Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 2000, 74: 17-24. 10.1016/S0960-8524(99)00160-1
Article
CAS
Google Scholar
Wei CJ, Tanner RD, Malaney GW: Effect of sodium chloride on Bakers’ yeast growing in gelatin. Appl Environ Microbiol 1982, 43: 757.
CAS
Google Scholar
Maiorella BL, Blanch HW, Wilke CR: Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 1984, 26: 1155-1166. 10.1002/bit.260261004
Article
CAS
Google Scholar
Modig T, Granath K, Adler L, Liden G: Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 2007, 75: 289-296. 10.1007/s00253-006-0821-8
Article
CAS
Google Scholar
Garcia MJ, Rios G, Ali R, Belles JM, Serrano R: Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 1997, 143: 1125-1131. 10.1099/00221287-143-4-1125
Article
CAS
Google Scholar
Casey E, Sedlak M, Ho NWY, Mosier NS: Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae . FEMS Yeast Research 2010, 10: 385-393. 10.1111/j.1567-1364.2010.00623.x
Article
CAS
Google Scholar
Bellissimi E, Van Dijken JP, Pronk JT, Van Maris AJA: Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Research 2009, 9: 358-364. 10.1111/j.1567-1364.2009.00487.x
Article
CAS
Google Scholar
Athmanathan A, Sedlak M, Ho NWY, Mosier NS: Effect of product inhibition on xylose fermentation to ethanol by saccharomyces cerevisae 424A (LNH-ST). Biological Engineering Transactions 2011, 3: 111-124.
Article
Google Scholar
Lu Y, Warner R, Sedlak M, Ho N, Mosier NS: Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog 2009, 25: 349-356. 10.1002/btpr.158
Article
CAS
Google Scholar
Cromie S, Doelle HW: Nutritional effects on the kinetics of ethanol production from glucose by Zymomonas mobilis. Appl Microbiol Biotechnol 1981, 11: 116-119. 10.1007/BF00518053
Article
CAS
Google Scholar
Olz R, Larsson K, Adler L, Gustafsson L: Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress. J Bacteriol 1993, 175: 2205-2213.
CAS
Google Scholar
Daran-Lapujade P, Daran J-M, Luttik MAH, Almering MJH, Pronk JT, Koetter P: An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. Fems Yeast Research 2009, 9: 789-792. 10.1111/j.1567-1364.2009.00530.x
Article
CAS
Google Scholar
Arino J, Ramos J, Sychrova H: Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 2010, 74: 95-120. 10.1128/MMBR.00042-09
Article
CAS
Google Scholar
Reed RH, Chudek JA, Foster R, Gadd GM: Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl Environ Microbiol 1987, 53: 2119.
CAS
Google Scholar
Bautista-Gallego J, Arroyo-Lopez FN, Duran-Quintana MC, Garrido-Fernandez A: Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Journal of Food Protection 2008, 71: 1412-1421.
CAS
Google Scholar
Fein JE, Barber DL, Charley RC, Beveridge TJ, Lawford HG: Effect of commercial feedstocks on growth and morphology of Zymomonas mobilis. Biotechnol Lett 1984, 6: 123-128. 10.1007/BF00127302
Article
CAS
Google Scholar
Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO: Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 2001, 17: 287-293. 10.1021/bp0001720
Article
CAS
Google Scholar
Alriksson B, Horvath IS, Sjode A, Nilvebrant NO, Jonsson LJ: Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 2005, 121: 911-922.
Article
Google Scholar
Ho NWY, Chen Z, Brainard AP, Sedlak M: Genetically engineered Saccharomyces yeasts for conversion of cellulosic biomass to environmentally friendly transportation fuel ethanol. In ACS Symposium Series 767. American Chemical Society: ; 2000:142-159. Green Chemical Syntheses and Processes
Google Scholar
Bera AK, Sedlak M, Khan A, Ho NWY: Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 2010, 87: 1803-1811. 10.1007/s00253-010-2609-0
Article
CAS
Google Scholar
Casey E, Sedlak M, Ho N, Mosier NS: Modeling fermentation of glucose/xylose to ethanol by Saccharomyces cerevisiae 424A(LNH-ST). Manuscript submitted for publication 2012.
Google Scholar
Gonzalez B, François J, Renaud M: A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 1997, 13: 1347-1355. 10.1002/(SICI)1097-0061(199711)13:14<1347::AID-YEA176>3.0.CO;2-O
Article
CAS
Google Scholar
Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, de Mattos MJT, Heijnen JJ: Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 2001, 75: 406-415. 10.1002/bit.10048
Article
CAS
Google Scholar
Yang W-C, Sedlak M, Regnier FE, Mosier N, Ho N, Adamec J: Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography−Mass spectrometry and in vitro 13C labeling. Anal Chem 2008, 80: 9508-9516. 10.1021/ac801693c
Article
CAS
Google Scholar
Jannasch A, Sedlak M, Adamec J: Quantification of Pentose Phosphate Pathway (PPP) Metabolites by Liquid Chromatography-Mass Spectrometry (LC-MS). Metabolic Profiling: Methods and Protocols 2011, 708: 159-171. 10.1007/978-1-61737-985-7_9
Article
CAS
Google Scholar