Li X, Kim TH, Nghiem NP: Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresour Technol 2010, 101: 5910-5916. 10.1016/j.biortech.2010.03.015
Article
Google Scholar
Sarris D, Giannakis M, Philippoussis A, Komaitis M, Koutinas AA, Papanikolaou S: Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. J Chem Technol Biotechnol 2013, 88: 958-969. 10.1002/jctb.3931
Article
Google Scholar
Matsakas L, Christakopoulos P: Optimization of ethanol production from high dry matter liquefied dry sweet sorghum stalks. Biomass Bioenerg 2013, 51: 91-98.
Article
Google Scholar
Yan S, Chen X, Wu J, Wang P: Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl Microbiol Biotechnol 2012, 94: 829-838. 10.1007/s00253-012-3990-7
Article
Google Scholar
Sims REH, Mabee W, Saddler JN, Taylor M: An overview of second generation biofuel technologies. Bioresour Technol 2010, 101: 1570-1580. 10.1016/j.biortech.2009.11.046
Article
Google Scholar
Moon HC, Song IS, Kim JC, Shirai Y, Lee DH, Kim JK, Chung SO, Kim DH, Oh KK, Cho YS: Enzymatic hydrolysis of food waste and ethanol fermentation. Int J Energ Res 2009, 33: 164-172. 10.1002/er.1432
Article
Google Scholar
Zhang M, Wang F, Su R, Qi W, He Z: Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 2010, 101: 4959-4964. 10.1016/j.biortech.2009.11.010
Article
Google Scholar
Silva VN, Arruda P, Felipe MA, Gonçalves A, Rocha GM: Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 2011, 38: 809-817. 10.1007/s10295-010-0815-5
Article
Google Scholar
Díaz MJ, Cara C, Ruiz E, Romero I, Moya M, Castro E: Hydrothermal pre-treatment of rapeseed straw. Bioresour Technol 2010, 101: 2428-2435. 10.1016/j.biortech.2009.10.085
Article
Google Scholar
Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 2008, 87: 3640-3647. 10.1016/j.fuel.2008.06.009
Article
Google Scholar
European Communities: EC preparatory study on food waste in the EU27. [http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf] []
Yan S, Li J, Chen X, Wu J, Wang P, Ye J, Yao J: Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew Energ 2011, 36: 1259-1265. 10.1016/j.renene.2010.08.020
Article
Google Scholar
Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energ Environ Sci 2013, 6: 426-464. 10.1039/c2ee23440h
Article
Google Scholar
Uncu ON, Cekmecelioglu D: Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manage 2011, 31: 636-643. 10.1016/j.wasman.2010.12.007
Article
Google Scholar
Luque R, Clark J: Valorisation of food residues: waste to wealth using green chemical technologies. Sustain Chem Process 2013, 1: 10. 10.1186/2043-7129-1-10
Article
Google Scholar
Arancon RAD, Lin CSK, Chan KM, Kwan TH, Luque R: Advances on waste valorization: new horizons for a more sustainable society. Energ Sci Eng 2013, 1: 53-71. 10.1002/ese3.9
Article
Google Scholar
Jensen JW, Felby C, Jørgensen H, Rønsch GØ, Nørholm ND: Enzymatic processing of municipal solid waste. Waste Manage 2010, 30: 2497-2503. 10.1016/j.wasman.2010.07.009
Article
Google Scholar
Ma J, Duong TH, Smits M, Verstraete W, Carballa M: Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 2011, 102: 592-599. 10.1016/j.biortech.2010.07.122
Article
Google Scholar
Singhal S, Bansal SK, Singh R: Evaluation of biogas production from solid waste using pretreatment method in anaerobic condition. Int J Emerg Sci 2012, 2: 405-414.
Google Scholar
Vavouraki AI, Angelis EM, Kornaros M: Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste Manage 2013, 33: 740-745. 10.1016/j.wasman.2012.07.012
Article
Google Scholar
Singhania RR, Patel AK, Soccol CR, Pandey A: Recent advances in solid-state fermentation. Biochem Eng J 2009, 44: 13-18. 10.1016/j.bej.2008.10.019
Article
Google Scholar
Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C: Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 2007, 96: 862-870. 10.1002/bit.21115
Article
Google Scholar
Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F: The IBUS process – lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 2008, 31: 765-772. 10.1002/ceat.200800048
Article
Google Scholar
Bernstad A, Malmquist L, Truedsson C, la Cour Jansen J: Need for improvements in physical pretreatment of source-separated household food waste. Waste Manage 2013, 33: 746-754. 10.1016/j.wasman.2012.06.012
Article
Google Scholar
Kim JH, Lee JC, Pak D: Feasibility of producing ethanol from food waste. Waste Manage 2011, 31: 2121-2125. 10.1016/j.wasman.2011.04.011
Article
Google Scholar
Le Man H, Behera SK, Park HS: Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Tech 2010, 7: 157-164. 10.1007/BF03326127
Article
Google Scholar
Zhang X, Richard T: Dual enzymatic saccharification of food waste for ethanol fermentation. Proceedings of international conference on electrical and control engineering: 16–18 September 2011; Yichang ISBN 978-1-4244-8162-0
Google Scholar
Szijarto N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L: Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels 2011, 4: 2. 10.1186/1754-6834-4-2
Article
Google Scholar
Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E: Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 2011, 86: 881-887. 10.1002/jctb.2604
Article
Google Scholar
Hoyer K, Galbe M, Zacchi G: Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J Chem Technol Biotechnol 2009, 84: 570-577. 10.1002/jctb.2082
Article
Google Scholar
Walker K, Vadlani P, Madl R, Ugorowski P, Hohn KL: Ethanol fermentation from food processing waste. Environ Prog Sustain Energ 2012, 32: 1280-1283.
Article
Google Scholar
Jeong S-M, Kim Y-J, Lee D-H: Ethanol production by co-fermentation of hexose and pentose from food wastes using Saccharomyces coreanus and Pichia stipitis . Korean J Chem Eng 2012, 29: 1038-1043. 10.1007/s11814-011-0282-3
Article
Google Scholar
Cekmecelioglu D, Uncu ON: Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manage 2013, 33: 735-739. 10.1016/j.wasman.2012.08.003
Article
Google Scholar
Kim JK, Oh BR, Shin H-J, Eom C-Y, Kim SW: Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem 2008, 43: 1308-1312. 10.1016/j.procbio.2008.07.007
Article
Google Scholar
Tang Y-Q, Koike Y, Liu K, An M-Z, Morimura S, Wu X-L, Kida K: Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenerg 2008, 32: 1037-1045. 10.1016/j.biombioe.2008.01.027
Article
Google Scholar
Dererie DY, Trobro S, Momeni MH, Hansson H, Blomqvist J, Passoth V, Schnürer A, Sandgren M, Ståhlberg J: Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresour Technol 2011, 102: 4449-4455. 10.1016/j.biortech.2010.12.096
Article
Google Scholar
Bauer A, Bösch P, Friedl A, Amon T: Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 2009, 142: 50-55. 10.1016/j.jbiotec.2009.01.017
Article
Google Scholar
Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 2009, 100: 2562-2568. 10.1016/j.biortech.2008.11.011
Article
Google Scholar
Bondesson PM, Galbe G, Zacchi G: Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 2013, 6: 11. 10.1186/1754-6834-6-11
Article
Google Scholar
Xiros C, Katapodis P, Christakopoulos P: Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw. Bioresour Technol 2009, 100: 5362-5365. 10.1016/j.biortech.2009.05.065
Article
Google Scholar
Matsakas L, Christakopoulos P: Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 2013, 127: 202-208.
Article
Google Scholar
Petrik S, Kádár Z, Márová I: Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass. Bioresour Technol 2013, 133: 370-377.
Article
Google Scholar
da Cunha-Pereira F, Hickert LR, Sehnem NT, de Souza-Cruz PB, Rosa CA, Ayub MAZ: Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae , Saccharomyces cerevisiae , and their co-fermentations. Bioresour Technol 2011, 102: 4218-4225. 10.1016/j.biortech.2010.12.060
Article
Google Scholar
Alvira P, Moreno AD, Ibarra D, Sáez F, Ballesteros M: Improving the fermentation performance of Saccharomyces cerevisiae by laccase during ethanol production from steam-exploded wheat straw at high-substrate loadings. Biotechnol Prog 2013, 29: 74-82. 10.1002/btpr.1666
Article
Google Scholar
Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO: Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 2010, 101: 1851-1857. 10.1016/j.biortech.2009.09.070
Article
Google Scholar
Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3
Article
Google Scholar
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66: 10-26. 10.1007/s00253-004-1642-2
Article
Google Scholar
LIFE 08/ENV/GR/000566 [http://www.uest.gr/drywaste/site/index.htm] []
Ghose TK: Measurement of cellulase activities. Pure Appl Chem 1987, 59: 257-268. 10.1351/pac198759020257
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31: 426-428. 10.1021/ac60147a030
Article
Google Scholar
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of Extractives in Biomass. Technical report NREL/TP-510-42619, Laboratory analytical protocol. Golden CO: National Renewable Energy Laboratory; 2008.
Google Scholar
Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3
Article
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin biomass. Technical report NREL/TP-510-42618, Laboratory analytical protocol. Golden CO: National Renewable Energy Laboratory; 2012.
Google Scholar
William H: Official methods of analysis of the association of official analytical chemists. Washigton DC: AOAC Inc; 1970.
Google Scholar
Phatak L, Chang KC, Brown G: Isolation and characterization of pectin in sugar-beet pulp. J Food Sci 1988, 53: 830-833. 10.1111/j.1365-2621.1988.tb08964.x
Article
Google Scholar
Karnaouri AC, Topakas E, Christakopoulos P: Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol Biotechnol 2013. in press
Google Scholar