Han K-H, Ko J-H, Yang SH: Optimizing lignocellulosic feedstock for improved biofuel productivity and processing. Biofuel Bioprod Bior. 2007, 1: 135-146. 10.1002/bbb.14.
Article
CAS
Google Scholar
Kumar R, Singh S, Singh OV: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008, 35: 377-391. 10.1007/s10295-008-0327-8.
Article
CAS
Google Scholar
Pienkos PT, Zhang M: Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. 2009, 16: 743-762. 10.1007/s10570-009-9309-x.
Article
CAS
Google Scholar
Jeong TS, Um BH, Kim JS, Oh KK: Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose. Appl Biochem Biotech. 2010, 161: 22-33. 10.1007/s12010-009-8898-z.
Article
CAS
Google Scholar
Delgenes JP, Moletta R, Navarro JM: Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol. 1996, 19: 220-225. 10.1016/0141-0229(95)00237-5.
Article
CAS
Google Scholar
Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO: Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol. 2009, 75: 6132-6141. 10.1128/AEM.01187-09.
Article
CAS
Google Scholar
Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B: Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 1999, 63: 46-55. 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J.
Article
CAS
Google Scholar
Heer D, Sauer U: Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol. 2008, 1: 497-506. 10.1111/j.1751-7915.2008.00050.x.
Article
CAS
Google Scholar
Mussatto SI, Roberto IC: Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004, 93: 1-10. 10.1016/j.biortech.2003.10.005.
Article
CAS
Google Scholar
Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW: Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010, 3: 2-10.1186/1754-6834-3-2.
Article
Google Scholar
Lin FM, Qiao B, Yuan YJ: Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol. 2009, 75: 3765-3776. 10.1128/AEM.02594-08.
Article
CAS
Google Scholar
Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH: Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol. 2011, 102: 6033-6038. 10.1016/j.biortech.2011.02.101.
Article
CAS
Google Scholar
Liu ZL: Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011, 90: 809-825. 10.1007/s00253-011-3167-9.
Article
CAS
Google Scholar
Mills TY, Sandoval NR, Gill RT: Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2009, 2: 26-10.1186/1754-6834-2-26.
Article
Google Scholar
Ma M, Liu ZL: Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics. 2010, 11: 660-10.1186/1471-2164-11-660.
Article
CAS
Google Scholar
Heer D, Heine D, Sauer U: Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol. 2009, 75: 7631-7638. 10.1128/AEM.01649-09.
Article
CAS
Google Scholar
Liu ZL, Moon J: A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009, 446: 1-10. 10.1016/j.gene.2009.06.018.
Article
CAS
Google Scholar
Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO: Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol. 2009, 75: 4315-4323. 10.1128/AEM.00567-09.
Article
CAS
Google Scholar
Si T, Luo Y, Bao Z, Zhao H: RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Syn Bio. 2014, doi:10.1021/sb500074a
Google Scholar
Liu HP: Constructing yeast libraries. Method Enzymol. 2002, 350: 72-86.
Article
CAS
Google Scholar
Online Sequence Analysis Tools. http://tools.neb.com/~posfai/project/Yeast_Digests.html,
Statistics of Randomized Library Construction. http://guinevere.otago.ac.nz/mlrgd/STATS/,
Shao Z, Zhao H, Zhao H: DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37: e16-10.1093/nar/gkn724.
Article
Google Scholar
Kebaara BW, Atkin AL: Long 3′-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res. 2009, 37: 2771-2778. 10.1093/nar/gkp146.
Article
CAS
Google Scholar
Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H: Overexpression of the yeast transcription activator MSN2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng. 2012, 113: 451-455. 10.1016/j.jbiosc.2011.11.017.
Article
CAS
Google Scholar
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.
Article
CAS
Google Scholar
Miura K, Jin JB, Hasegawa PM: Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol. 2007, 10: 495-502. 10.1016/j.pbi.2007.07.002.
Article
CAS
Google Scholar
Geiss-Friedlander R, Melchior F: Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007, 8: 947-956. 10.1038/nrm2293.
Article
CAS
Google Scholar
Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF: SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 2006, 20: 2067-2081. 10.1101/gad.1430406.
Article
CAS
Google Scholar
Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO: Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource Technol. 2010, 101: 1851-1857. 10.1016/j.biortech.2009.09.070.
Article
CAS
Google Scholar
Kim IS, Sohn HY, Jin I: Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. J Microbiol. 2011, 49: 816-823. 10.1007/s12275-011-1154-6.
Article
CAS
Google Scholar
Zaldivar J, Martinez A, Ingram LO: Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 1999, 65: 24-33. 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2.
Article
CAS
Google Scholar
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ: Transcriptional profiling shows that GCN4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol. 2001, 21: 4347-4368. 10.1128/MCB.21.13.4347-4368.2001.
Article
CAS
Google Scholar
Hinnebusch AG: Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988, 52: 248-273.
CAS
Google Scholar
Johnson ES: Protein modification by SUMO. Annu Rev Biochem. 2004, 73: 355-382. 10.1146/annurev.biochem.73.011303.074118.
Article
CAS
Google Scholar
Johnson ES, Gupta AA: An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell. 2001, 106: 735-744. 10.1016/S0092-8674(01)00491-3.
Article
CAS
Google Scholar
Strunnikov AV, Aravind L, Koonin EV: Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics. 2001, 158: 95-107.
CAS
Google Scholar
Ii T, Mullen JR, Slagle CE, Brill SJ: Stimulation of in vitro sumoylation by SLX5-SLX8: evidence for a functional interaction with the SUMO pathway. DNA Repair. 2007, 6: 1679-1691. 10.1016/j.dnarep.2007.06.004.
Article
CAS
Google Scholar
Rosonina E, Duncan SM, Manley JL: Sumoylation of transcription factor GCN4 facilitates its SRB10-mediated clearance from promoters in yeast. Genes Dev. 2012, 26: 350-355. 10.1101/gad.184689.111.
Article
CAS
Google Scholar
Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP: A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics. 2005, 4: 246-254. 10.1074/mcp.M400154-MCP200.
Article
CAS
Google Scholar
Srikumar T, Lewicki MC, Raught B: A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome. Mol Syst Biol. 2013, 9: 668-
Article
CAS
Google Scholar
Treger JM, Schmitt AP, Simon JR, McEntee K: Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem. 1998, 273: 26875-26879. 10.1074/jbc.273.41.26875.
Article
CAS
Google Scholar
Wong CM, Zhou Y, Ng RWM, Kung HF, Jin DY: Cooperation of yeast peroxiredoxins TSA1p and TSA2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem. 2002, 277: 5385-5394. 10.1074/jbc.M106846200.
Article
CAS
Google Scholar
Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S: The Saccharomyces cerevisiae SKO1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol. 2001, 40: 1067-1083. 10.1046/j.1365-2958.2001.02384.x.
Article
CAS
Google Scholar
Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A: Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochemical J. 1998, 330 (Pt 2): 811-817.
Article
CAS
Google Scholar
Du J, Yuan Y, Si T, Lian J, Zhao H: Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012, 40: e142-10.1093/nar/gks549.
Article
CAS
Google Scholar
Radonjic M, Andrau JC, Lijnzaad P, Kemmeren P, Kockelkorn TT, van Leenen D, van Berkum NL, Holstege FC: Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol Cell. 2005, 18: 171-183. 10.1016/j.molcel.2005.03.010.
Article
CAS
Google Scholar
Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989, 122: 19-27.
CAS
Google Scholar
Gietz RD, Schiestl RH, Willems AR, Woods RA: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995, 11: 355-360. 10.1002/yea.320110408.
Article
CAS
Google Scholar
Kelly C, Jones O, Barnhart C, Lajoie C: Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol. 2008, 148: 97-108. 10.1007/s12010-007-8103-1.
Article
CAS
Google Scholar
Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J: Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. Plos One. 2013, 8: e54144-10.1371/journal.pone.0054144.
Article
CAS
Google Scholar