Hasunuma T, Kondo A: Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30: 1207-1218. 10.1016/j.biotechadv.2011.10.011
Article
Google Scholar
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 2010, 101: 4851-4861. 10.1016/j.biortech.2009.11.093
Article
Google Scholar
da Costa Sousa L, Chundawat SP, Balan V, Dale BE: ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 2009, 20: 339-347. 10.1016/j.copbio.2009.05.003
Article
Google Scholar
Hendriks AT, Zeeman G: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009, 100: 10-18. 10.1016/j.biortech.2008.05.027
Article
Google Scholar
Percival Zhang YH, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006, 24: 452-481. 10.1016/j.biotechadv.2006.03.003
Article
Google Scholar
Xu Q, Singh A, Himmel ME: Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 2009, 20: 364-371. 10.1016/j.copbio.2009.05.006
Article
Google Scholar
Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16: 577-583. 10.1016/j.copbio.2005.08.009
Article
Google Scholar
Cardona CA, Sánchez OJ: Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 2007, 98: 2415-2457. 10.1016/j.biortech.2007.01.002
Article
Google Scholar
Pandey A: Handbook of plant-based biofuels. Boca Raton: CRC Press; 2009.
Google Scholar
Olsson L, Hähnhagerdal B: Fermentative Performance of Bacteria and Yeasts in Lignocellulose Hydrolysates. Process Biochem 1993, 28: 249-257. 10.1016/0032-9592(93)80041-E
Article
Google Scholar
Lau MW, Gunawan C, Balan V, Dale BE: Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 2010, 3: 11. 10.1186/1754-6834-3-11
Article
Google Scholar
van Zyl WH, Lynd LR, den Haan R, McBride JE: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae . Biofuels 2007, 108: 205-235. 10.1007/10_2007_061
Article
Google Scholar
Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004, 70: 1207-1212. 10.1128/AEM.70.2.1207-1212.2004
Article
Google Scholar
Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A: Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 2002, 68: 5136-5141. 10.1128/AEM.68.10.5136-5141.2002
Article
Google Scholar
Kondo A, Ueda M: Yeast cell-surface display–applications of molecular display. Appl Microbiol Biotechnol 2004, 64: 28-40. 10.1007/s00253-003-1492-3
Article
Google Scholar
Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M: Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 2008, 105: 622-627. 10.1263/jbb.105.622
Article
Google Scholar
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A: Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 2011, 4: 8. 10.1186/1754-6834-4-8
Article
Google Scholar
Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A: Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 2010, 5: 449-455. 10.1002/biot.200900291
Article
Google Scholar
Ueda M, Tanaka A: Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 2000, 90: 125-136.
Article
Google Scholar
Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H: High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 2002, 58: 291-296. 10.1007/s00253-001-0900-9
Article
Google Scholar
Matano Y, Hasunuma T, Kondo A: Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Appl Microbiol Biotechnol 2013, 97: 2231-2237. 10.1007/s00253-012-4587-x
Article
Google Scholar
Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K: Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 1998, 180: 3381-3387.
Google Scholar
Jones ME: Analysis of algebraic weighted least-squares estimators for enzyme parameters. Biochem J 1992, 288(Pt 2):533-538.
Article
Google Scholar
Ten LN, Im WT, Kim MK, Kang MS, Lee ST: Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004, 56: 375-382. 10.1016/j.mimet.2003.11.008
Article
Google Scholar
van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT: Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 1997, 63: 615-620.
Google Scholar
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A: Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 2010, 9: 32. 10.1186/1475-2859-9-32
Article
Google Scholar
Decker CH, Visser J, Schreier P: β-glucosidases from five black Aspergillus species : study of their physico-chemical and biocatalytic properties. J Agric Food Chem 2000, 48: 4929-4936. 10.1021/jf000434d
Article
Google Scholar
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9: 3273-3297. 10.1091/mbc.9.12.3273
Article
Google Scholar
Pittet M, Conzelmann A: Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae . Biochim Biophys Acta 2007, 1771: 405-420. 10.1016/j.bbalip.2006.05.015
Article
Google Scholar
Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM: In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae . Yeast 1997, 13: 1477-1489. 10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO;2-L
Article
Google Scholar
Vossen JH, Müller WH, Lipke PN, Klis FM: Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. J Bacteriol 1997, 179: 2202-2209.
Google Scholar
Hamada K, Fukuchi S, Arisawa M, Baba M, Kitada K: Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae . Mol Gen Genet 1998, 258: 53-59. 10.1007/s004380050706
Article
Google Scholar
Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K: Amino acid residues in the ω-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 1999, 181: 3886-3889.
Google Scholar
Frieman MB, Cormack BP: The ω-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 2003, 50: 883-896. 10.1046/j.1365-2958.2003.03722.x
Article
Google Scholar
van der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT: Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae . J Bacteriol 1995, 177: 3104-3110.
Google Scholar
Doering TL, Schekman R: GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J 1996, 15: 182-191.
Google Scholar
Dupres V, Dufrêne YF, Heinisch JJ: Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 2010, 4: 5498-5504. 10.1021/nn101598v
Article
Google Scholar
Schreuder MP, Mooren AT, Toschka HY, Verrips CT, Klis FM: Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 1996, 14: 115-120. 10.1016/0167-7799(96)10017-2
Article
Google Scholar
Shimojyo R, Furukawa H, Fukuda H, Kondo A: Preparation of yeast strains displaying IgG binding domain ZZ and enhanced green fluorescent protein for novel antigen detection systems. J Biosci Bioeng 2003, 96: 493-495.
Article
Google Scholar
Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H: Global gene expression analysis of yeast cells during sake brewing. Appl Environ Microbiol 2006, 72: 7353-7358. 10.1128/AEM.01097-06
Article
Google Scholar
Dashtban M, Schraft H, Qin W: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 2009, 5: 578-595.
Article
Google Scholar
Stricker AR, Mach RL, de Graaff LH: Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina ( Trichoderma reesei ). Appl Microbiol Biotechnol 2008, 78: 211-220. 10.1007/s00253-007-1322-0
Article
Google Scholar
Katahira S, Mizuike A, Fukuda H, Kondo A: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 2006, 72: 1136-1143. 10.1007/s00253-006-0402-x
Article
Google Scholar
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14: 115-132. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
Article
Google Scholar
Cha-aim K, Fukunaga T, Hoshida H, Akada R: Reliable fusion PCR mediated by GC-rich overlap sequences. Gene 2009, 434: 43-49. 10.1016/j.gene.2008.12.014
Article
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6: 343-345. 10.1038/nmeth.1318
Article
Google Scholar
Chen DC, Yang BC, Kuo TT: One-step transformation of yeast in stationary phase. Curr Genet 1992, 21: 83-84. 10.1007/BF00318659
Article
Google Scholar
Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A: Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 2013, 163: 50-60. 10.1016/j.jbiotec.2012.10.017
Article
Google Scholar
Matano Y, Hasunuma T, Kondo A: Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 2012, 108: 128-133.
Article
Google Scholar
Hasunuma T, Sung K, Sanda T, Yoshimura K, Matsuda F, Kondo A: Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae . Appl Microbiol Biotechnol 2011, 90: 997-1004. 10.1007/s00253-011-3085-x
Article
Google Scholar