Bayer EA, Shimon LJ, Shoham Y, Lamed R: Cellulosomes-structure and ultrastructure. J Struct Biol 1998, 124: 221-234. 10.1006/jsbi.1998.4065
Article
Google Scholar
Demain AL, Newcomb M, Wu JH: Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005, 69: 124-154. 10.1128/MMBR.69.1.124-154.2005
Article
Google Scholar
Bayer EA, Lamed R, White BA, Flint HJ: From cellulosomes to cellulosomics. Chem Rec 2008, 8: 364-377. 10.1002/tcr.20160
Article
Google Scholar
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC: High ethanol titers from cellulose using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77: 8288-8294. 10.1128/AEM.00646-11
Article
Google Scholar
Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58: 521-554. 10.1146/annurev.micro.57.030502.091022
Article
Google Scholar
Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005, 5: 3646-3653. 10.1002/pmic.200401199
Article
Google Scholar
Hon-nami K, Coughlan M, Hon-nami H, Ljungdahl L: Separation and characterization of the complexes constituting the cellulolytic enzyme system of Clostridium thermocellum . Arch Microbiol 1986, 145: 13-19. 10.1007/BF00413021
Article
Google Scholar
Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG: Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 2011, 77: 1243-1253. 10.1128/AEM.02008-10
Article
Google Scholar
Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum . J Bacteriol 1983, 156: 828-836.
Google Scholar
Beguin P, Alzari PM: The cellulosome of Clostridium thermocellum . Biochem Soc Trans 1998, 26: 178-185.
Article
Google Scholar
Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, Cheng JF, Pitluck S, Woyke T, Ivanova N, Mikhailova N, Land M, Hauser L, Argyros DA, Goodwin L, Hogsett D, Caiazza N: Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 2011, 193: 2906-2907. 10.1128/JB.00322-11
Article
Google Scholar
Tokatlidis K, Salamitou S, Beguin P, Dhurjati P, Aubert JP: Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett 1991, 291: 185-188. 10.1016/0014-5793(91)81279-H
Article
Google Scholar
Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 2010, 1: e00285.
Article
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382: 769-781. 10.1042/BJ20040892
Article
Google Scholar
Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum . Proc Natl Acad Sci U S A 2006, 103: 16165-16169. 10.1073/pnas.0605381103
Article
Google Scholar
Zverlov VV, Klupp M, Krauss J, Schwarz WH: Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS 1447 , and implications for cellulase synergism on crystalline cellulose. J Bacteriol 2008, 190: 4321-4327. 10.1128/JB.00097-08
Article
Google Scholar
Olson DG, Giannone RJ, Hettich RL, Lynd LR: Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum . J Bacteriol 2013, 195: 733-739. 10.1128/JB.02014-12
Article
Google Scholar
Waller BH, Olson DG, Currie DH, Guss AM, Lynd LR: Exchange of type II dockerin-containing subunits of the Clostridium thermocellum cellulosome as revealed by SNAP-tags. FEMS Microbiol Lett 2013, 338: 46-53. 10.1111/1574-6968.12029
Article
Google Scholar
Guo H, Karberg M, Long M, Jones JP III, Sullenger B, Lambowitz AM: Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 2000, 289: 452-457. 10.1126/science.289.5478.452
Article
Google Scholar
Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM: Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotech 2001, 19: 1162-1167. 10.1038/nbt1201-1162
Article
Google Scholar
Perutka J, Wang W, Goerlitz D, Lambowitz AM: Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 2004, 336: 421-439. 10.1016/j.jmb.2003.12.009
Article
Google Scholar
Chen Y, McClane BA, Fisher DJ, Rood JI, Gupta P: Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol 2005, 71: 7542-7547. 10.1128/AEM.71.11.7542-7547.2005
Article
Google Scholar
Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM: Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 2014, 5: 2. 10.1186/1759-8753-5-2
Article
Google Scholar
Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP: The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 2010, 80: 49-55. 10.1016/j.mimet.2009.10.018
Article
Google Scholar
Mohr G, Hong W, Zhang J, Cui G-Z, Yang Y, Cui Q, Liu Y-J, Lambowitz AM: A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum . PLoS One 2013, 8: e69032. 10.1371/journal.pone.0069032
Article
Google Scholar
Mohr G, Ghanem E, Lambowitz AM: Mechanisms used for genomic proliferation by thermophilic group II introns. PLoS Biol 2010, 8: e1000391. 10.1371/journal.pbio.1000391
Article
Google Scholar
Gold ND, Martin VJ: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007, 189: 6787-6795. 10.1128/JB.00882-07
Article
Google Scholar
Morag E, Bayer EA, Lamed R: Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum . Enzyme Microb Technol 1992, 14: 289-292. 10.1016/0141-0229(92)90153-F
Article
Google Scholar
Dykstra AB, Brice LS, Rodriguez M, Raman B, Izquierdo J, Cook KD, Lynd LR, Hettich RL: Development of a multi-point quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex. J Proteome Res 2013, 13: 692-701.
Article
Google Scholar
Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 2009, 4: e5271. 10.1371/journal.pone.0005271
Article
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D: Determination of structural carbohydrates and lignin in biomass. NREL Lab Anal Proced 2008. http://www.nrel.gov/docs/gen/fy13/42618.pdf
Google Scholar
Richards FJ: A flexible growth function for empirical use. J Exp Bot 1959, 10: 290-300. 10.1093/jxb/10.2.290
Article
Google Scholar
Fontes CM, Gilbert HJ: Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 2010, 79: 655-681. 10.1146/annurev-biochem-091208-085603
Article
Google Scholar
Bayer EA, Setter E, Lamed R: Organization and distribution of the cellulosome in Clostridium thermocellum . J Bacteriol 1985, 163: 552-559.
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31: 426-428. 10.1021/ac60147a030
Article
Google Scholar
Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl Environ Microbiol 2010, 76: 3787-3796. 10.1128/AEM.00266-10
Article
Google Scholar
Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RA, Kilburn DG: Characterization and affinity applications of cellulose-binding domains. J Chromatogr B 1998, 715: 283-296. 10.1016/S0378-4347(98)00053-X
Article
Google Scholar
Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA: A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 2013, 6: 182. 10.1186/1754-6834-6-182
Article
Google Scholar
Smith SP, Bayer EA: Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 2013, 23: 686-694. 10.1016/j.sbi.2013.09.002
Article
Google Scholar
Bras JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, Bolam DN, Romao MJ, Gilbert HJ, Fontes CM: Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. J Biol Chem 2012, 287: 44394-44405. 10.1074/jbc.M112.407700
Article
Google Scholar
Leibovitz E, Beguin P: A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 1996, 178: 3077-3084.
Google Scholar
Adams JJ, Pal G, Jia Z, Smith SP: Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc Natl Acad Sci U S A 2006, 103: 305-310. 10.1073/pnas.0507109103
Article
Google Scholar
Zhang YH, Lynd LR: Cellulose utilization by Clostridium thermocellum : bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 2005, 102: 7321-7325. 10.1073/pnas.0408734102
Article
Google Scholar
Bayer EA, Kenig R, Lamed R: Adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983, 156: 818.
Google Scholar
Lamed R, Naimark J, Morgenstern E, Bayer E: Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 1987, 169: 3792-3800.
Google Scholar
Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM: Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum . Biochem J 2009, 424: 375-384. 10.1042/BJ20091152
Article
Google Scholar
Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y: Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci U S A 2010, 107: 18646-18651. 10.1073/pnas.1012175107
Article
Google Scholar
Chaves-Olarte E, Ferdinand P-H, Borne R, Trotter V, Pagès S, Tardif C, Fierobe H-P, Perret S: Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose? PLoS One 2013, 8: e69360. 10.1371/journal.pone.0069360
Article
Google Scholar
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC: Development of pyrF -based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 2010, 76: 6591-6599. 10.1128/AEM.01484-10
Article
Google Scholar
Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from Clostridium thermocellum . Proc Natl Acad Sci U S A 2010, 107: 17727-17732. 10.1073/pnas.1003584107
Article
Google Scholar
Frazier CL, San Filippo J, Lambowitz AM, Mills DA: Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl Environ Microbiol 2003, 69: 1121-1128. 10.1128/AEM.69.2.1121-1128.2003
Article
Google Scholar
Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD: Generalized bacterial genome editing using mobile group II introns and Cre- lox . Mol Syst Biol 2013, 9: 685.
Article
Google Scholar
Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio 2012, 3: e00508-e00512.
Article
Google Scholar
Cui GZ, Hong W, Zhang J, Li WL, Feng Y, Liu YJ, Cui Q: Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 2012, 89: 201-208. 10.1016/j.mimet.2012.02.015
Article
Google Scholar
Guss AM, Olson DG, Caiazza NC, Lynd LR: Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum . Biotechnol Biofuels 2012, 5: 30. 10.1186/1754-6834-5-30
Article
Google Scholar
Cocco E, Casagrande F, Bellone S, Richter CE, Bellone M, Todeschini P, Holmberg JC, Fu HH, Montagna MK, Mor G, Schwartz PE, Arin-Silasi D, Azoudi M, Rutherford TJ, Abu-Khalaf M, Pecorelli S, Santin AD: Clostridium perfringens enterotoxin carboxy-terminal fragment is a novel tumor-homing peptide for human ovarian cancer. BMC Cancer 2010, 10: 349. 10.1186/1471-2407-10-349
Article
Google Scholar
Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ: Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features. Appl Environ Microbiol 2008, 74: 5497-5503. 10.1128/AEM.00262-08
Article
Google Scholar
Harlow E, Lane D: Using Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1999.
Google Scholar
Li X-L, Li B-Y, Gao H-Q, Cheng M, Xu L, Li X-H, Zhang W-D, Hu J-W: Proteomics approach to study the mechanism of action of grape seed proanthocyanidin extracts on arterial remodeling in diabetic rats. Int J Mol Med 2010, 25: 237.
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3
Article
Google Scholar
Lynd LR, Grethlein HE, Wolkin RH: Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum . Appl Environ Microb 1989, 55: 3131-3139.
Google Scholar
Xu Q, Ding S-Y, Brunecky R, Bomble YJ, Himmel ME, Baker JO: Improving activity of minicellulosomes by integration of intra-and intermolecular synergies. Biotechnol Biofuels 2013, 6: 126. 10.1186/1754-6834-6-126
Article
Google Scholar
Gelhaye E, Claude B, Cailliez C, Burle S, Petitdemange H: Multilayer adhesion to filter paper of two mesophilic, cellulolytic clostridia. Curr Microbiol 1992, 25: 307-311. 10.1007/BF01577226
Article
Google Scholar