Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science. 2007, 315: 804-807. 10.1126/science.1137016.
Article
CAS
Google Scholar
McCann MC, Carpita NC: Designing the deconstruction of plant cell walls. Curr Opin Plant Biol. 2008, 11: 314-320. 10.1016/j.pbi.2008.04.001.
Article
CAS
Google Scholar
Wilson DB: Three microbial strategies for plant cell wall degradation. Ann Ny Acad Sci. 2008, 1125: 289-297. 10.1196/annals.1419.026.
Article
CAS
Google Scholar
Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005, 16: 577-583. 10.1016/j.copbio.2005.08.009.
Article
CAS
Google Scholar
Lin L, Xu J: Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv. 2013, 31: 827-837. 10.1016/j.biotechadv.2013.03.003.
Article
CAS
Google Scholar
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM: Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol. 2008, 19: 210-217. 10.1016/j.copbio.2008.04.007.
Article
CAS
Google Scholar
Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725. Appl Environ Microbiol. 2009, 75: 4762-4769. 10.1128/AEM.00236-09.
Article
CAS
Google Scholar
Chung DCM, Guss A, Westpheling J: Direct conversion of plant biomass to ethanol by Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A. 2014, 111: 8931-8936. 10.1073/pnas.1402210111.
Article
CAS
Google Scholar
Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin YB, Xu Y, Kataeva I, Poole FL, Adams MWW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM: Caldicellulosiruptor Core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol. 2012, 194: 4015-4028. 10.1128/JB.00266-12.
Article
CAS
Google Scholar
Dam P, Kataeva I, Yang SJ, Zhou FF, Yin YB, Chou WC, Poole FL, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MWW: Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 2011, 39: 3240-3254. 10.1093/nar/gkq1281.
Article
CAS
Google Scholar
Lochner A, Giannone RJ, Rodriguez M, Shah MB, Mielenz JR, Keller M, Antranikian G, Graham DE, Hettich RL: Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol. 2011, 77: 4042-4054. 10.1128/AEM.02811-10.
Article
CAS
Google Scholar
Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MW, Lunin VV, Himmel ME, Bomble YJ: Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science. 2013, 342: 1513-1516. 10.1126/science.1244273.
Article
CAS
Google Scholar
Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA: Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol. 2010, 76: 3236-3243. 10.1128/AEM.00009-10.
Article
CAS
Google Scholar
Zverlov V, Mahr S, Riedel K, Bronnenmeier K: Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology. 1998, 144 (Pt 2): 457-465. 10.1099/00221287-144-2-457.
Article
CAS
Google Scholar
Yi Z, Su X, Revindran V, Mackie RI, Cann I: Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase, byCaldicellulosiruptor besciiduring growth on crystalline cellulose.PLoS One 2013, 8:e84172.,
Gilbert HJ: Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol. 2007, 63: 1568-1576. 10.1111/j.1365-2958.2007.05640.x.
Article
CAS
Google Scholar
Bayer EA, Morag E, Lamed R: The Cellulosome - a treasuretrove for biotechnology. Trends Biotechnol. 1994, 12: 379-386. 10.1016/0167-7799(94)90039-6.
Article
CAS
Google Scholar
Bayer EA, Setter E, Lamed R: Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol. 1985, 163: 552-559.
CAS
Google Scholar
Kataeva I, Foston MB, Yang SJ, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng YN, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding SY, Kelly RM, Hahn MG, Adams MWW: Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energ Environ Sci. 2013, 6: 2186-2195. 10.1039/c3ee40932e.
Article
CAS
Google Scholar
Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J: Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation ofCaldicellulosiruptor besciiDSM6725.PLoS One 2012, 7:e43844.,
Chung DH, Huddleston JR, Farkas J, Westpheling J: Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes. J Ind Microbiol Biotechnol. 2011, 38: 1867-1877. 10.1007/s10295-011-0976-x.
Article
CAS
Google Scholar
Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J: Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol. 2013, 40: 1443-1448. 10.1007/s10295-013-1345-8.
Article
CAS
Google Scholar
Chung D, Cha M, Farkas J, Westpheling J: Construction of a stable replicating shuttle vector forCaldicellulosiruptorspecies: use for extending genetic methodologies to other members of this genus.PLoS One 2013, 8:e62881.,
Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci U S A. 2010, 107: 17727-17732. 10.1073/pnas.1003584107.
Article
CAS
Google Scholar
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance.Biotechnology Biofuels 2010, 3:10.,
Gao S, You C, Renneckar S, Bao J, Zhang YH: New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP.Biotechnology Biofuels 2014, 7:24.,
Tolonen AC, Chilaka AC, Church GM: Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol. 2009, 74: 1300-1313. 10.1111/j.1365-2958.2009.06890.x.
Article
CAS
Google Scholar
Farkas J, Chung DW, Cha M, Copeland J, Grayeski P, Westpheling J: Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol. 2013, 40: 41-49. 10.1007/s10295-012-1202-1.
Article
CAS
Google Scholar
Sambrook JaR DW: Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
Google Scholar
Kanafusa-Shinkai S, Wakayama J, Tsukamoto K, Hayashi N, Miyazaki Y, Ohmori H, Tajima K, Yokoyama H: Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii. J Biosci Bioeng. 2013, 115: 64-70. 10.1016/j.jbiosc.2012.07.019.
Article
CAS
Google Scholar